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The unsteady two-dimensional flow of a viscoelastic second-grade fluid impinging
on an infinite plate is considered. The plate is making harmonic oscillations in its
own plane. A finite difference technique is employed and solutions for small and
large frequencies of the oscillations are obtained.
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1. Introduction. In the past two decades, the importance of non-Newtonian
viscoelastic liquids have become evident due to their occurrence in industrial
processes. Behaviour of viscoelastic fluids cannot be accurately described by
the Newtonian fluid model. The equations of motion of viscoelastic fluids are
highly nonlinear and one order higher than the Navier-Stokes equations.

The two-dimensional stagnation point flow is an interesting problem in the
history of fluid dynamics and has received considerable attention. Beard and
Walters [2] used boundary-layer equations to study two-dimensional flow near
a stagnation point of a viscoelastic fluid. Dorrepaal et al. [3] investigated the
behavior of a viscoelastic fluid impinging on a flat rigid wall at an arbitrary
angle of incidence. Labropulu et al. [5] studied the oblique flow of a viscoelastic
fluid impinging on a porous wall with suction or blowing.

Unsteady stagnation point flow of a Newtonian fluid has also been studied
extensively. Rott [8] and Glauert [4] have studied the stagnation point flow
of a Newtonian fluid when the plate performs harmonic oscillations in its
own plane. Srivastava [9] has studied the same problem for a non-Newtonian
second-grade fluid. He used the Karman-Pohlhausen method to solve the re-
sulting equations.

This paper considers the unsteady two-dimensional flow of an incompress-
ible viscoelastic second-grade fluid impinging on an infinite flat plate. We as-
sume that the plate is making harmonic oscillations in its own plane. Series
method is employed to evaluate the solution for small and large frequencies
of the oscillations. The resulting differential equations are solved numerically
using a finite difference method developed by Ariel [1].

2. Flow equations. The flow of a viscous incompressible non-Newtonian
second-grade fluid, neglecting thermal effects and body forces, is governed
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by
divV =0, pV=divT (2.1)

when the constitutive equation for the Cauchy stress tensor T which describes
second-grade fluids given by Rivlin and Ericksen [7] is

T=-pl+pA+x A+ x2A], A= (gradV)+ (grad\N/)T,

_ . (2.2)
A=A+ (gradV) A; +A; (gradV).

Here V is the velocity vector field, p the fluid pressure function, p the con-
stant fluid density, u the constant coefficient of viscosity, and «;, &> the normal
stress moduli.

Considering the flow to be plane, we take Y = (u(x,y,t),v(x,y,t)) and
p = p(x,y,t) so that our flow equations (2.1) and (2.2) take the form
ou v
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where v = u/p is the kinematic viscosity.

(2.4)

=vV2v+—{ (V2v)

(2.5)
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The continuity equation (2.3) implies the existence of a stream function
Y (x,y,t) such that
oY oy
== == 2.
oy’ v 0x (2.6)
Substitution of (2.6) in (2.4) and (2.5) and elimination of pressure from the
resulting equations using px, = p,x yields

E(V‘Z([/) x1 0 (V4 ) ((»U V2 W) + (‘l’ v W)

40 —

Having obtained a solution of (2.7), the velocity components are given by (2.6)
and the pressure can be found by integrating (2.4) and (2.5).
The shear stress component T;2 of the Cauchy stress T is given by

n{ 5 S o[ 50 (oaans 3 ) - e (555 - 5oty
T2 =157 T ox2 TN 5y \Gxay3 " ax3) " ax \ay3  oxZay
0x0y 0y? 0x2 0xoy 1)’

(2.8)

3. Solutions. We consider the two-dimensional flow of an incompressible
fluid against an infinite plate normal to the flow. We assume that the plate
makes harmonic oscillations on its own plane and its velocity in the x-direction
is ae'®! where a and w are constants.

The boundary conditions are then given by

at,U _aeiwt al.[l

- = , =0 aty =0,
0 0
Y X 3.1)
oy
— =CX asy — oo.
0
Following Glauert [4], we assume that
W =cxf(y)+aeg(y). (3.2)
The boundary conditions take the form
f(0) = f'(0) =0, g’ (0) =1,
’ 7 (33)
Sf(0)=1, g'(0)=0
Using (3.2) in (2.7), we obtain
R R A AL
vg™ —iwg” + jlwg(”“ +c(fg" - f” )= (Fg - Fg) =0

(3.4)
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TABLE 3.1. Numerical values of F' (0), ¢, (0), ¢} (0), and ¢ (0) for
different values of W,.

We F"(0) $(0) $1(0) $3(0)

0.0 1.23259 -0.811318 -0.49307 0.0945488
0.1 1.36954 -0.86709 -0.547302 0.0658565
0.2 1.5873 —0.947485 -0.633897 0.0221985
0.3 2.11092 -1.10879 -0.842867 -0.0761073

Nondimensionalizing using

C %4 \%
n=Sv s =YFm. g =Yem, 63

we get

FW 4 FF" —F'F" + W, (FF") —=F'F) = 0,

icwW, (3.6)

iw G — o

G FG" —F'G' + We(FG —F'G') = = =G" -
where W, = —x;c/pv is the Weissenberg number.

Integrating (3.6) once with respect to n and using the conditions at infinity,
we have

F" +FF' —F?+W,(FF") —2F'F" +F"?) = -1,

, , (3.7)
F0)=0, F(0)=0, F'(e0)=1,

G”,"FFG”—F,G,'FW;;(FG(I'U)—F,G,”‘l‘F”G”—F”IG,)—¥(G,+WQG”,) :0’
G'(0) =1, G' () =0. (3.8

System (3.7) has been solved numerically by many authors (Beard and
Walters [2] and Ariel [1]). Using the shooting method with the finite difference
technique described by Ariel [1], we find that F”"(0) = 1.23259 when W, = 0.
Numerical values of F"’(0) for different values of W, are shown in Table 3.1.
Figure 3.1 shows the profiles of F’ for various W,. We observed that as the
elasticity of the fluid increases, the velocity near the wall increases. Figure 3.2
depicts the profiles of F for various W,.

Letting ¢(n) = G’ (n), then system (3.8) becomes

(i)//+F¢/_F1¢+We(F¢NI_F/¢II+FH¢)/_FNI¢)_iTw(¢+We¢H):0
$(0) =1, P (o0) =0.

(3.9
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FIGURE 3.2. Variation of F(n) with W,.

The only parameter in (3.9) is the frequency ratio w/c. Series solutions will
be developed, valid for small and large values of w/c, respectively.
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FIGURE 3.3. Variation of ¢o(n) with W,.

3.1. Small values of w/c. Consider the case where w = 0, which implies
that the plate velocity has the constant value a. Letting ¢ = ¢, then system
(3.9) gives

$o +Fdpo—F o+ We(Fpy' —F g +F" by —F" o) =0,

b0(0) =1,  ¢po(c0) =0. (3.10)

This system is solved numerically by using a shooting method and it is found
that for W, =0, ¢, (0) = —0.811318 which is in good agreement with the value
obtained by Glauert [4]. Numerical values of ¢ (0) for different values of W,
are shown in Table 3.1. Figure 3.3 depicts the profiles of ¢ for various values
of We.

For small but nonzero values of w/c, we let

E i\ iw iw\?
¢>(n>=ngo(7) ) = pom+ L m+ (12) g2+ 31D

Substituting (3.11) into (3.9), we get, for n > 1,

PPy —F o+ Wel P —F i F by = F ' pn) = oy + Wb,

¢1’L(O):0! d)n(OO)ZO.
(3.12)
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FIGURE 3.4. Variation of ¢} (n) with We.

This system can be solved numerically either by using the perturbation
technique or by a finite difference scheme. Numerical integration of system
(3.12) for n = 1 using a finite difference technique gives, for W, = 0, ¢ (0) =
—0.49307 which is in good agreement with Glauert’s value [4]. Numerical val-
ues of ¢/ (0) for different values of W, are shown in Table 3.1. Figure 3.4 shows
the profiles of ¢, for various values of W,.

Numerical integration of system (3.12) for n = 2 using a finite difference
technique gives, for W, = 0, ¢,(0) = 0.0945488 which is in good agreement
with Glauert’s value [4]. Numerical values of ¢ (0) for different values of W,
are shown in Table 3.1. Figure 3.5 depicts the profiles of ¢, for various values
of W,.

The oscillating component of the shear stress on the wall is given by

% = %eiwf[%m) + %qﬁi(O) —WeF”(O)], (3.13)

where F"'(0), ¢(0), and ¢/ (0) are given in Table 3.1 for different values of
W,. When W, = 0, the value of the shear stress on the wall is in good agreement
with the value obtained by Glauert [4].

3.2. Large values of w/c. When w/c is large, we let

iw iw
Y = /Tn_ /73;_ (3.14)
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FIGURE 3.5. Variation of ¢y (n) with W,.

Letting /iww/c = &, then d/dn = d/xdY and (3.9) takes the form

1d2¢+1[Fd¢ dF ]

a2 dy? ol dy dy
3 2 2 3 2
+LWE[Fﬁ_£M+d_F@_d_F ]_L _Wedd
o dy3 dy dy?  dy2dy dy3 o2 T ot dy?
(3.15)

Since W, is small for most fluids which behave as second-order fluids (see
Markovitz and Coleman [6]), we follow Srivastava [9] and take W, to be of the
order of «?. Thus, W, = m«? and (3.15) becomes

d’¢ d¢ dF
(1-m e ol Fay 4y 9] 516
imo[pLY dEL EFAY LF ) |
dy3 4y dy? dy?dy dy3 e
The expansion for F(n) near the wall n =0 is
F(n)=1An2+1(—1—wAz)n3+iA2n5+L(—2A—WA3)n6+---
2 6 ¢ 120 720 ¢ ’

(3.17)
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where A = F”(0). Since n = &Y and W, = ma?, the above expansion takes the
form

F(Y) = A(x 2y? 4 (15( 1-ma’A?)’Y3
(3.18)

L 245y5_ L 2 42) 876 +
+120A0<Y 720(2A+mo<A)o<Y

Since for large values of w/c the parameter « is small, we let
b= &"Ppu(Y) = po(Y)+api(Y)+oCPa(Y) +---. (3.19)
n=0
The boundary conditions are

Go(0)=1, Pu(0)=0 ifn=1, Pplec)=0 Vn. (3.20)

Substituting (3.19) in (3.16) and equating the coefficients of different powers
of « to zero, we find that the boundary value problem for ¢ (Y) is

dz
a-mEE go=0, B0 =1, (=0, @21

with solution ¢ (Y) = exp[-Y/+/1—m] provided m # 1.
The second and third equations give that ¢, and ¢, are zero. The next four
equations for ¢3(Y), ¢p4(Y), ¢ps(Y), and ¢pg(Y) are

2
d ¢3 _¢3 __mAde ¢0+ AYd 4)0

(1-m)

dy? dys dy?

+ (— %AYZ —mA) (?1)/0 +AY ¢,
1o e ()8 ()
(1—m>”§§;5—¢5 0,

+(§mA2Y3 120A2Y5 ZAZY)%

+ (— %mZAZYZ + imAZY‘I) ‘ﬁﬁo

+AY¢3+( 2AY2+mA> dq;j

+MAY ‘75;*;3 - %mAYZ dd;*f .

(3.22)
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Solving these equations and using the boundary conditions, we obtain

_ A -Y/m[3—4m 3 ) 1 3]
P3(Y) = T g Y+8MY +12(1_m)y ,
A 3+4m 3—-4m .
y) = —Y/\wl—m|: y 2
balY) =e 16vi—m 16(1-m)
1 1
+ Y3+ Y4],
8(1-m)vVi-m 48(1-m)2
$s(Y) =0,
be(Y) = emm[_ (40m3 — 50m? + 28m — 33) A
6 128(1-m)v1-m (3.23)
(24m3 +18m? —52m + 33) A® v
128(1-m)?

(8m3—2m? +64m —33)A% _,
196(1-m)?/1-m
(8m3 —30m? —36m +27)A? ”

384(1-m)3
~ (3mP+6m-9)A% o (m’-2m-4)A%
480(1-m)3J/1-m 1440(1 —m)+ ’

provided m # 1. If m = 0, we recover the solutions for the Newtonian fluid
obtained by Glauert [4].
The oscillating component of the shear stress on the wall is given by

T2 [cv 1 +(3—4m)Ao‘2_ 3+4m o
pa? Na2|a/1-m 8(1-m) 16v1—-m
(40m3 —50m? +28m —33) A?
128(1-m)v1-m

If m = 0, the shear stress is in good agreement with the result obtained by
Glauert [4].

(3.24)
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