IJMMS 2003:56, 3573-3590
PII. S0161171203203264
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

INTERVAL ESTIMATES OF FUNCTIONALS IN TIME-DELAY
SYSTEMS WITH UNCERTAINTY
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We consider a linear dynamical system with delay and uncertainty in initial data
and movement and measurement equations. We present an algorithm of estimat-
ing an interval of possible values of functionals on solutions. We construct sub-
optimal weight functions in integral observation operators to minimize a sure
estimation.
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1. Introduction and problem statement. Theory of time-delay systems with
uncertainties has a wide bibliographies. We cite only some papers which con-
tain more detailed bibliographies [1, 2, 3, 5, 6, 7, 9, 10]. Due to applied prob-
lems of observation and estimation theory in the infinite-dimensional case,
only limited (finite-dimensional) information is known about the phase state or
the trajectory, and the values of other given functionals are to be determined.
With present uncertainties, it is natural to look for intervals of possible values.
By choosing the weight functions for measurements processing, it is useful to
minimize the error estimation. This paper may be considered as the realization
of common ideas of numerical analysis for the considered problem.

Let the functional differential equations

x(6) = f(t,x(@),x,,u(t),u®)),  yt)=gt,x(t),x;,v(t)) (1.1)

model the movement law and accessible information about the motion. Here,
x(t) e R, y(t) e R™, t = 0, xt = x¢(-) : [-h,0] - R", x:(0) = x(t +0),
0 € [—h,0], u(t) is the control, u(t) and v(t) are the perturbation of the
movement equation and measurements errors. Components f and g are lin-
ear bounded functionals. Detailed theory of functional differential equations
is presented, for instance, in [4]. Firstly, general ideas of the paper will be dis-
cussed. Consider the following problem: construct an algorithm which allows
to determine an interval of possible values of a functional J = J(x(s),xs,u(+))
using any accessible measurements y(-). As for J, we can use the components
of a vector x(s), projections (Fourier coefficients) of elements x, u(-), and so
on. Suppose that the initial data x(0) and x((-), and noises u(-) and v(-) are
unknown, but limited by a priori given ellipsoid.
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Explicit description of a set {(x(s),x;)} in a general case seems impossi-
ble. Restrictions on x(0), xo(-), u(-), and v(-) theoretically allow estimating
the phase state (x(s),x) in a norm, and obtain an estimation of the possi-
ble values of the functional J. But due to possible “gluing” effect of solutions
of time-delay equations, the initial ellipsoid by the time s may “lose a dimen-
sion” and such estimation of J will be for sure rough. To store a continuum of
values of y(t) is practically impossible; thus we will assume that during the
measuring, a signal y (t) goes to integrators, and weightened integral sums J;,
1 <i < ¢, are accumulated. The problem appears in a general form as estimat-
ing possible values of a given functional using known values of others. Such
problems, interpolation, quadratures, and so forth are classical in numerical
analysis.

Using a technique of conjugate equations, J and J; can be represented ex-
plicitly as functionals on the initial data x(0), xo(-), u(-), and v(-). This allows
finding precise estimations of possible values of J. Moreover, such representa-
tion is reasonable from the point of view of stability analysis of J and J; with
respect to variations of the initial data and the noises. The geometrical consid-
eration of realized values of J; = y;, 1 <i <, is in the fact that an interval of
values J is calculated as a “length of run” of a plane, corresponding to J, on
an intersection of sections of the initial ellipsoid by ¢ planes.

For simplicity, some generalizations for the case of considering uncertainty
of both the initial data and the noises will be given at the end of the paper.
Firstly, a particular case will be considered: when a main perturbation is of
uncertainty of the initial data, the noises in the movement equations and the
measurements errors are sufficiently small and can be ignored. Here is the
model of the typical application case:

N 0
x(t) = Zij(t—hj) +J hA(G)x(t+9)d0+Bu(t), t=0, (1.2)
Jj=0 -

x(0) = x9, x(T) =x0(T), Te[-h0), Xo=(x%x0(+)) eM>, (1.3)

y(t) =Gx(t), rankG =m < n, O=ho<h;<---<hy=h. (1.4)

Here, M, = R" X L} [—h,0], matrices Aj, B, and G of dimensions n xn, nxny,
and m x n are constant, elements of A(-) and components of a given vector
function (control) u(-) are piecewise continuous on the considered time seg-
ment [0, t4]. Initial data X, consisting of a starting point x° and necessary for
(1.2) history x¢(-), are unknown.

The solutions of (1.2) are understood as almost everywhere on a segment
[0,t4] (rather large compared to [0, h]), where My = R* X L%, X = (x(t),x;) =
(x(t),x(t+-)) € M», serves as a phase space. This is because the history influ-
ences the movements integrally. The dependence on the initial data x (t;X0,0)
and X;(Xp,0) is noted in a standard way. Vectors x(0) and x((0) are, in a
general case, different. A change in values of x((T) on a zero measure set in
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[—h,0] does not change the movement x(t), t > 0. The solution x(t) is ab-
solutely continuous on [0, t+] (moreover, it belongs to H!([0,t,],R™)), thus
it is convenient to identify a class x; € Lo([—h,0],R") with its continuous
representative on [—t,0] n[—h,0]. Then x;(0) = x(t), for t > 0.

Fix anatural ¥ > 1, and consider the problem of determination of all possible
values of a given functional (projection X,)

0
J=p° x(rh)+J hp’(T)x(rh+T)dT= (D2 %)y, - (1.5)
Here, rh < ty, p = (p°,p(-)) € M>. Let the initial phase uncertainty be limited:

0
(X0,%0) o = x'Q"x° +J hxg(T)meo(T)dT <K% (1.6)

The matrix Q (t) is piecewise continuous. Matrices Q (t) and Q° are symmetri-
cal and positively defined. It is not necessary that Q% = Q(-0).

We suggest that while information y (t) arrives on a time segment [0, (v —
1)h], the following functionals are calculated:

r—1 . r—1 , 0
Ji= > (kij, pij) = > (k?Jy(thJ k;j(r)y(jmr)ah)
j=1 j=1 ~h

(1.7)

r—1 , p

= Z k?j)’(jh)-%Jl) K (m)y(t)dt, p=(r-1)h,
j=1

Pin= (R, (jh+2),  kij= (k) ki () € My = R™ XL, (1.8)

Ki(jh+T) =kij(1t), T€[-h0],1<j<r-1,1<i<¢. (1.9)

We detail the problem. We need an algorithm for determining a segment of
possible values of J by known available values of observation (measure pro-
cessing) functionals J;, 1 < i < €. The a priori restrictions on unknown initial
data X, are taken into account. In case p(-) = 0 (zeros are all named by one
symbol) then, varying p° € R", one obtains the components (projections) of
the position x(s) at time s = v h. When p° = 0, these are the phase state projec-
tions x5 in L, (Fourier coefficients). Some vector weight coefficients k?j and
functions k;;(-) may be zero if, for instance, no measurements on appropri-
ate time segment are made or if the measurements made are unreliable. In
particular, it is possible that only discrete measurements y(jh) are used, and
then all k;;(-) = 0. Elements of Izi i€ I\N/Iz are determined by the properties of a
certain technical device.

2. Necessary functional representations. Values of the functionals J and
Ji are determined by the unknown initial data Xo. Thus for estimating J by
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the values of J;, it is reasonable to obtain representations J = J(Xo) and
Ji = Ji(X0). This will allow not only estimating the initial data variation im-
munity of the functionals, but also obtaining the precise estimations of the
possible values of J (in case initial limitations of the problem are considered
precise). The appropriate transforms are based on the following natural idea.
If a functional J is given, J = (P, Xrn)m, = (P,PX0)m,, then it is necessary to
find an operator % and “move it to an argument p,” determining a conjugate
%*.In a general case, the representations J; = J;(X,,) are impossible because
model (1.2) is not integrable when time decreases.

We define for a homogeneous (i.e., when u(-) = 0) dynamical system with
the time-delay (1.2) a shift operator and a conjugate to it:

T, T*:M; — My,  TXo=Xn(X0,0),
A s ~ A A (2.1)
(a,Tz), =(T*a,z), va,ze M.

A scalar product (-, -)¢ is defined in (1.6).

Let us find the convenient representation of the operator T*. Fix any vector
function V() € H'([-h,0],R™), where the components of V(-) are absolutely
continuous and their derivatives (they exist almost everywhere in a classical
sense) are square integrable. Denote x(-) = x(-;Z,0). The aim of the follow-
ing transforms is to move the integrals in an inner product (a,TZ) from the
argument Z to a by integration by parts:

0
(a,T2) =a” Q% (h) +J ha’(T)Q(T)x(hH)dT

0 N
+J hV,(T)*l)'C(”l-ﬁ-T)— Zij(h—thrT)

j=0
0
—J A (h+T+0)d0 (T

h

— 2" Q% (h) + JO 4 (s—M)Q(s—h)x(s)ds + V' (0)x (h)

h
V' (~h)x(0) —jo V' (s—h)x(s)ds

N h-h;
-> J V'(s—h+hj)A;x(s)ds
j=07"hj
0 h+t
—J hV’(T){ A(S—]’L—T)X(S)dS}dT
=V'(0)x(h)-V'(-h)x(0)

n
+ JO (@ (s—h)Q(s—h)=V'(s—h))x(s)ds +a® Q°x(h)
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N (0
Z{ V'(s—h+hj)Ajx(s)ds
j=0 L/=hy

h=h;
+I V’(s—h+hj)ij(s)ds}
0

0 0
—J V'(T){J A(s—h—’r)x(s)ds}d'r
—-h T
0 h+t
—J V’(T)“ A(s—h—T)x(s)ds}dT.
—h 0
(2.2)
Redefine A(-) and V() as zero outside of [—h,0] and choose V(-) on [—h,0]

such that in the last equality there are no values of x(t) when t € (0,h]. This
demand implies the following equation:

N 0
V(t) =—ZA}V(t+hj)—J’ A (t-T)V(T)dT+Q(t)a(t),

= n (2.3)
t € [-h,0], V(0) = -Q%a° V(1) =0, A(T) =0, T ¢ [-h,0],

which is integrable (at least numerically) from right to left on a time segment
[—h,0]. Due to the choice of V(-) according to (2.3), we obtain

N -0
(@, T2)y = -V'(-h)x(0) - > J hV’ (s—h+hj)Ajx(s)ds
j=07"
0 0
_J v’(ﬂ“ A(s—h—T)x(s)ds}dT = (6,2)0, (2.4)
~h -h
N 0
c(t) = —Q—l(t)‘[ S AWV(t-h+hy) +J hA'(t—h—T)V(T)dT]»,
=0 -
V(T) =0, A(T) =0, T ¢ [—h,0]. Thus, by definition,

T*a=2¢, ¢=(c%c(+)), c®=-Q" 'V (-h). (2.5)

The value of the conjugate operator T* on the element a € M; is determined
by the solution V(-) of system (2.3), which is called conjugate to (1.2). The
representation of J = J(Xy) in a homogeneous case (when u(-) = 0) is written
in the form

J=(P.Zrn)y, = Q1P T"R0) o = (T*"Q7'H,%0) - (2.6)

Here the following notation is defined: Q15 = (Q°~'p°, Q-1 ()p(-)) € M>.
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Now, using T*, transform the functional J on the solutions of the perturbed
movement equation (1.2) with u(-) = 0:

0
=(T*Q7'P,Xr-1)h)q — Lh V. (T)Bu(rh+T)dT
0
= (T*ZQ‘lﬁ,fc(yfzm)Q—J hv;(T)Bu(rh+T)dT (2.7)

0
—J th’,l(T)Bu((T—l)h+T)dT

Y0
= (T Q7B R0) g — ZJ hVJ’.(T)Bu(j]/L+T)dT.
J=1""

An appearance of V;(-) at u(-) = 0 is a consequence of a transform tech-
nique (a,TZ)q. A vector function V,(-) is determined as the solution of (2.3)
which is conjugate to (1.2) with initial data V(0) = —p° and nonhomogeneity
p(t) (instead of Q(t)a(t)). The next V,_1(+),...,V1(-) are determined recur-
rently (here @ = T*" Q-1 p):

N 0
Vi(t) == > A}Vi(t+hy) —J A(t-T)Vi(T)dT
=0 B (2.8)

N 0
- z A}Vi+1(t—h+hj) —J hA’(t—h—T)Vpg(T)dT,
J=0 B

te[-h,0],Vi(0)=Vii1(=h), Vi(T) =0, A(T) =0, T ¢ [-h,0].

Define on [0,7h] a continuous vector function b(-) by “gluing” V;(-) as fol-
lows: b(ih+T) = Vi(T), T € [-h,0],i = 1,7. Then the following representation
is obtained:

rh
— *r -1 5 _ ’
J= (170 pRodg - | b (m)Bu(TIdT oo

~

= (T*Té_lﬁ:X0>Q —(B'b,u),.

The sense of such representation is that the functional J is now explicitly pre-
sented via the input data X, and u(-). Moreover, calculated T*Véflﬁ and b(-)
give information about initial data Xy and control u(-) variations immunity of
values J. If, for example, the structure of controlling influence (matrix B) and
the vector function b(-) are such that the values B'b(t) are negligibly small,
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then the given projection J is naturally called invariant to control u(-).

Varying p € M (b = b(p)) and making B'b(t) =~ 0, we obtain a description

of the set of such functionals. In the same way, T*TQ*Iﬁ ~ 0 is understood.
Transform in the similar way the functionals J; from (1.7):

r—1
Ji= Z (kijJ?jh) = Z <G'ki‘j,)?jh> = Z <Q71G’kij,)?jh>Q,
= i (2.10)
(ﬁij,j\/jh> = (T*jéflc/ﬁij,)?())(l— ZJ hV{JS(T)Bu(SI’L+T)dT.
s=1""

Here Pk = (Pk% Pk(-)). The vector functions V;;;(-) are defined by the conju-

gate system (2.3) with initial data V' (0) = —G’k?j and nonhomogeneity G'k;;(-),

and Vijj-1(-),...,Viji(-) are obtained recurrently by (2.8) (with respect to the

third index), that is, in (2.3), 4 = T*J*SQ*IG'IQI",', s=j-1,...,1, is assumed.
Defining

bl’j(t) = Vijs(thh), te [(S*l)h,Sh], l<s<j,

r—1 r—1
bij(t) =0, te (jh,rh], bi(t)= > bij(t), di=> TYQ 'Gkij,
j=1 j=1
(2.11)

we obtain the representation of the measurement processing operators
rh
Ji={di,X0)q fJO bi(T)Bu(T)dTt = (Gi,X0) g — (B'bi,u) . (2.12)

Here b;(Tt) =0, T € [(r —1)h,vh]. By choosing weight elements IQU, one can
affect sensitivity of the functionals J; to variations of 1(-) and X.

It must be noted that almost all calculations are of the same kind and all
call the same subprogram of numerical integration of system (2.3) with a fixed
set of initial data and nonhomogeneities.

3. Interval estimations of functional values. So, the functionals J and J; of
the problem are represented as

A~

J = <q1550>Q_W! Ji = <El\i!520>Q_‘~pi! ‘-I} = <B,b!u>L21

|
—

v

, N A o 3.1)
Wwi=(B'bi,u),, 4=T"Q7'p, dqi= TYQ 'G'ki.

-
Il
—

The elements gq,4; € M = R" X LY[—h,0] are determined using the definition
of the conjugate operator T*. Some technical difficulties occur while calculat-
ing the vector functions b and b;. Later, to understand an estimation algorithm,
it is enough to know that  and y; are constant (zeros in a homogeneous prob-
lem u(-) =0).
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We are interested in an algorithm, which allows the estimation of possible
values of the functional J by any possible (considering (1.6)) realization J; = y;:

|J_Q91(Y1s---,)’()|5092()’1s---,)/€)- (32)

As u(-) is known, the functionals
I=J+y=(d,%0)q Li=Ji+Wwi={4iXo0)q, (X0, X0)g <R*  (3.3)

can be considered instead of J and J;. The problem is formulated in terms of
functional analysis: to estimate the functional I using the known values I;.
Among classical problems of calculus, this problem is considered, for instance,
in [11].

Imagine a three-dimensional analogue of infinite-dimensional ellipsoid of
initial data Xo. The information I; = «; reduces uncertainty in X, to the in-
tersection of an ellipsoid by ¢ planes. A run of the plane I = const through
this intersection gives the set of all possible values of I that we want to find.
In auxiliary argumentations, an index Q in scalar products will be omitted as
well as a hat sign, I = (q,x0), I; = (qi,X0),.... The elements gq; € M, are con-
sidered linearly independent, otherwise some of the functionals (1.7) carry no
additional information about x( and there is no need to calculate them. If g lin-
early depends on g;, then a functional J for all xo € M> is uniquely determined
on the values of J;. These are singular cases, so later on a system ¢,41,...,q¢
is considered linearly independent.

Here are some ideas based on some well-known geometrical facts. Define in
M, = R" X L5[—h,0] a new scalar product

<Z|x> <Z!QI> e <Z,Q(>
(ai,x) (a,a1) - (a1,4c)

[z,x] = : : : : . (3.4)
(ax) (aoar) --- {(doac)

Without further corrections, it is not quite an inner product: [z,z] = 0 implies
z € %o, $o =%1{q1,...,49¢}, and z may be nonzero. Here & is a symbol of a
linear hull. To eliminate this difficulty, consider instead a coset space, where
%o will be zero. But later, only Cauchy-Schwarz-Bunyakovskii inequality will be
needed:

[z,x1?<[z,z] - [x,x]:[z+Ax,z+Ax]

) L (3.5)
=A[x,x]+2A[z,x]+[z,z] =0 VAER",

implying that a discriminant [z,x]% —[z,z] - [x,x] is nonpositive.
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The quantity [z,z] is a determinant of the Gram matrix I'{z,q1,...,q¢}. By
definition, an element I3;{d,,...,ds}=(d;,d;). It is known that a linear depen-
dence of d; is the same as detI'{d;,...,d;} = 0. Gram matrix is symmetrical
and nonnegatively defined. Moreover, it is positively defined if d; are linearly
independent. Thus, for [z, z], all axioms of a scalar product hold, except only
[z,z] = 0if and only if z = 0. The last is not important here and, as has already
been noted, can be overcome by coset terms.

Write the determinant using an orthogonal expansion:

z=2+2z4 2% %y, z*+ € 44,

(3.6)
(2%,z4) =(qi,z*) =0 = [z,z] = {z*,z ) detly, Tp=T{qi,...,q¢}.
To do this, represent a row
({z,2),...,{z,q¢)) = ({(2°,2°) + (z*,2z%),..., (2%, a¢)) (3.7)

as a sum ({z9,29),...,(z% q¢)) + ({z*,z*),...,0), and expand the determinant
to the sum of two, one of which is detI'{z% q1,...,q¢} = 0. Thus, the quan-
tity [z,z]/detly = (z+,z') is a square of the distance in metrics defined by
the scalar product (-,:) = (-,-)q, from the element z to the linear hull £, =
Lidr,---,qe}-

Return to the initial problem. Let the values I; = «;, i = 1,¢, appear to be
known as a result of measuring y(t) and calculating J; according to (1.7).
Then, using

((z,x),{z,a1),...,(z,q¢)) = ({2,x),0,...,0) + (0,{z,41),...,{z,4¢))  (3.8)
for the first row, after transforming determinants in [3,X01% < [4,4] - [Xo,X0],

|I-1,| <F\F, (3.9)

(o %)

det

o Iy , detl
T AaT. 1

detIy - detl}’

I*:_ F22:<5201520>+R0(!

0 o
det((x F) (3.10)

0
detIp

~A A

r:r{q!qll---![il}! I‘O:r{aly---lal}l Ry =
O(:(O(],...,(X[)’, UZ((&!&])!""(&!&[))” <a>:(1>Q

The geometrical sense of F; is the distance (in a metric, defined by (-, -)q)
from g to the linear hull ¥y = ${41,...,4,} and that of F, is a distance from
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realized X¢ to £o. As X is unknown, then instead of (3.9), an estimation, cal-
culated using «j, is obtained:

|[I-I.| <FiF3,  F§=k*+Rq. (3.11)

Calculating determinants for any realization of «; is not rational, so we find
a more convenient interpretation for an estimation. Let

Ay = {5(\'0 e M | <5(\'0,)?0>Q =< RZ, <Zii:5€0>Q =, 1<i=< f}. (3.12)

Consider, for a fixed Xy € Ay, an orthogonal expansion (note that, in auxiliary
calculations, the symbol hat and the index Q are omitted): xo = x4 + v, X« € <,
v e &y, and (x,v) = 0. From (qi,x0) = (qi,Xx) and (x0,X0) = (Xs,Xx) +
(v,v), it follows that x, € A,. A difference of two elements of A, belongs to
%5 . Thus, fixing x,, we obtain a representation xo = x4 + v for all xo € A,. Here
a variation v € %5 is limited by the condition x¢ € Ay. Expansion coefficients
Xy =C1q1 + -+ - +ceqe due to (qi,x4x) = & are determined from a system of
linear equations I'yc = «. Thus, x, is determined uniquely, independently of
the initially chosen xo € A, which can also be easily proved for the contraries.
If one changes zero in the determinant, which appears in the expression for I,
to (q,x«)—{(q,x+«) and represent the determinant as a sum of two, considering
that x4, € %o, then I, = (q,x4). In a similar way (0 = (x4, Xxx) — (X4,Xx) and
(qi,Xx) = &), the quantity Ff = (X0,X0) — (X4, Xx) is calculated.

Thus, if the coefficient vector ¢ and the element X4 = ¢1g; + - - - + ¢, are
determined on realized values of I; = «; from the system Ihc = «, then the
estimation will appear in a more compact form:

=

|I—I*| <FkF SF1F3, 1= <é\,5c\'0

)

=)

I*:<
= F3.

(3.13)

wro

~

>l
F22 = <520!5€'0> - <5e*15e*> = RZ - <5€*,5€'*

This estimation is precise. It is possible to move in limits of A, from a point
Xy in direction v € £§ up to the bound of the ellipsoid. Let x¢ = x, + Ag*
(@a=q°+qa*, q° € %y, g+ € £§) with a number parameter A from the condition
{(x0,x0) = k2. Calculate the quantities which appear in (3.13):

[I-I| = [{q,xs+Aq") —(q,xx) | = 1Al{q",q"),
F} = detl'/detly = p*{q, %o} = (a*,a*), (3.14)
FZZ :Féz = (X +q", X +q") — (X5, X4) :/\2<51L,ql>-

All inequalities become equalities. We get precisely a segment of possible val-
ues of the functional I when I; = «;, 1 <i < {. An element x,, which defines a
centre of the segment I, = (q,Xx.), is naturally taken as an estimation of the
unknown initial state x.
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If a biorthogonal system of elements of the form d; = Bj1q1 + - -+ + Bjeqe
({di,aj) = 6i; is a Kronecker symbol) is constructed using calculated g;, then,
for all «,

¢
(@i, x+) = i, x4 € £{aj} =L{d;} = x4 = D ajd;,

j=1
€
F3=i?= > ooEiy, &= (didy), (3.15)
Q=1
€
I, = Z &, &i=(aq,d;).
j=1

We now find a more convenient representation of F; (a distance p{q, %o} from g
to the linear hull of g;) using a Fermat theorem for minimization of a positively
defined square form with respect to coefficients y;:

2

¢ ¢
Flzzmi_n q—Zyidi :>Z'Yi*<di,dj>=<01adj>,
i i1 Q i=1
¢
q_ZYi*diqua (di,aj) =61 =y =(a,a:), (3.16)
i=1

F} =p*{a, %o} = (a*,a*) = (a,a) - > (a,ai){a,d:).

i=1

Now we formulate step by step a preliminary algorithm (simplifying the no-
tation):

(1) calculate elements g and g; € M», vector functions b(-) and b;(-) in the

representation of J(xg) and J;(xp) in the forms (2.9) and (2.12), and
the integrals ¢ and y; (for a homogenous system b = b; = ¢ = ¢; = 0)
integrating (2.3) with different a;

(2) determine a system of elements {d;} which is biorthogonal to {g;} (this

demands to solve a system of linear equations with matrix Ij);

(3) calculate values of &; = (q,d;) and &;; = (d;,d ) and determine F12 using

the obtained above formula.

After these preliminary calculations, it is necessary to “memorize” only the
elements d; and the numbers ¢, y;, F1, §;, and &;;.

Actually, the algorithm which estimates J works as follows. Using the re-
alized values of the functionals J; in (1.7), we calculate «; = J; + ¢; and a
square form F§ according to (3.15), and obtain J, = o1& + - -+ & — Y. A
precise estimation of possible values of a functional J is given by the formula
|J — J«| < F1F3. Here a complete distinctness of J = J, when F, = 0 is not
rejected. An optimal estimating element, if necessary, is defined by a linear
combination x4 = o1dy + - - - + Xedy.
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4. Optimization of estimation. Estimation structure gives an idea that to
minimize Fy, it is reasonable to choose one of the functionals (say J;) accord-
ing to the condition ||§ — 41 llo — min. And other functionals J»,...,J, should
be chosen such that most probable realizations of X, are close to %y. If only
guaranteed estimations (|I —I«| < F1 K, maxF, = maxF3 = K) are considered,
then a problem ||g — 41 1lo — min remains, but a choice of Js,...,J, does not in-
fluence F, and is not important. Thus, it is interesting to consider the following
optimization problem:

|IT*7 Q"' - SK||, — min. (4.1)

Subject of optimization is a set of elements K= (121,...,127_1) e ]\72”1, and an
operator S : ]\N/IZV ~1 . M, is defined by the formula

r—1
SK=>T*Q'Gk;. (4.2)
j=1
Problem (4.1) means that we are interested in a quasisolution [8] of the operator
equation SK = § (4 = T*"Q~'p) in the space M} ~!. Here we use in M, a norm
generated by the inner product (-, -)q.

In a standard way, it is proved (for instance, with the use of a Gronwall
lemma) that linear operators T,T* : M, — M, are totally continuous. Thus
S I\N/I§ ~isnot closed. An exception is only if S is finite dimensional, but this is an
evidence of the initial model (1.2) being singular. Thus, solvability of the equa-
tion SK = 4 is not guaranteed. Moreover, a problem (4.1) can have no solution.
Here, we meet typical difficulties of solving ill-posed problems (an equation
of the first kind with totally continuous operator) [8]. But impossibility in the
general case of solving a problem does not mean that it is impossible to find a
reasonable approximate solution of (4.1). There is a vast literature about regu-
larization of ill-posed problems. There are no barriers of using them. This way
is well studied, but difficult to use. We try to benefit from a specific structure
of the operator S.

Let B=071G6' = (Q°'G’,Q"1(-)G’) and note that

r—1
SK=> T*Q'G'k;
j=1 4.3)

=T*(Bky+ -+ +T*(Bky_3+ T* (Bky_o + T* (Bky_1 +0))) - - -).
Consider a discrete dynamical system in Mo:

X; =0, Xis1 = T*Xi + T*B\ﬁi, ﬁi (S ]\72. (4.4)

Define controls 7i; = ky_1,... and i, ; = k;. Then X, = SK and the problem
is now posed in terms of a control theory, choosing the controls 7i; which
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transfer a phase point from zero to g by r steps. In the context of a control
theory, it is clear why it is impossible in the general case to solve the problem
X, = @: any system has its own attainability set and it is difficult to achieve a
complete controllability in an infinite-dimensional case.

Now note that for (4.4), it is sufficient to study controllability by r steps in
the linear variety T*"M, = {§ = T*"Q~'p | p € M»}. Unfortunately, exclud-
ing a singular case when T* is finite dimensional, the linear set T*" M, is not
a subspace of M. While r grows, not only the attainability set (D;,.1(0) =
{Xy41} 2 D+ (0) = {X,}) extends, but also the goal set T*"M, itself “moves
towards” (T*"*'M, < T*"M,). Thus the problem SK = 4, having no solution
when 7 is fixed, may become solvable when » grows, that is, when the system
(1.2) is observed for a longer time. Here appears a problem: at what conditions
on Aj, A(+), Q, and G is it possible, with a certain v, that an absorption by
the growing attainability set D, (0) of the narrowing goal set T*" M, occurs? If
D, (0) = T*" M, holds, then in the obtained estimations it is possible to achieve
F1 = 0 and then the values of J = (p, X,n) M, are defined precisely for all p € M>.
But this means that there is a possibility to reconstruct X, uniquely by the
measurements (1.4), and thus a movement of a system (1.2) for t > rh. This
property is called a complete observability.

In applications, the great efforts for solving an infinite-dimensional absorp-
tion D, (0) 2 T*"M, are rarely reasonable, for the model describes approxi-
mately areal process. Thus, we return to an estimation problem J = (P, Xn) u, -
An estimation of a sufficient number of such functionals (Fourier coefficients)
gives an approximation of the phase state X, .

Let7 and p be fixed. Assuming that there is no precise solution to a two-point
control problem X; = 0 and X, = g (in this case it is possible to make F; = 0 and
uniquely restore the values of J = I, — ¢ with infinite-dimensional uncertainty
(1.6) of the initial data X(), we consider the problem [|X, — gllo — min. But
this problem is also ill posed. A set of attainability (4.4) is described as the
linear hull ££{T*7*1§]\72,...,T*§]\~/12}. This “sum of rotating-by-T* planes” in
an infinite-dimensional case is not closed and the projections 4 on &£ (in M>
with (-, -) ), which would determine an optimal K , may not exist. We construct
a suboptimal set K of weight elements 121-. The sense of a prefix sub will be
detailed later.

A dynamical programming method will be used. Let just before the last con-
trol step the system (4.4) be in the state X2_;, which will be considered as an
unknown parameter. Optimal #i,_; must solve the problem

1Xr—4llg — min, X, =T*X? | +T*Bii,_;. (4.5)
Refusing the solution (quasisolution) to an ill-posed problem

T*Bii,_1=4-T*X° ,, B=Q7'G, (4.6)
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with a parameter X0 ,, consider the similar problem
1Xr =allg < IIT*[]- [1X0 + Bty =T ' Q7 'pllg — min.  (4.7)

Instead of the goal function, its upper bound will be minimized. A new problem
is in fact a finite-dimensional least squares problem. It has a unique solution

a0 (X)) =N(r"1Q'p-xP), N=(GQ7'¢)'G.  (48)

Obtaining a formula (4.8) is easy, if one remembers a standard problem in R™ :
f(x) = |Ax — b||gn — min, where A = A, ., Tank A = m < n. Expand f2(x) :
(Ax —b,Ax —b)gn = (A’Ax,x) —2(Ax,b) + (b,b). A matrix A’A, as a Gram
matrix of linearly independent columns of A, is symmetrical and positively
defined. Thus, a positively defined square form of x is obtained. A minimum
is unique and is determined using a Fermat theorem: 2A’Ax°—-2A'b =0, x° =
(A’A)"1A'D.

Remember that according to accepted notation, short expressions with
“hats” are understood by context: for all 4 = (a®,a(-)) € M»,

1

(GO 'G) 'Ga

(GQ'G',GQ ()G 'Ga
— (4.9)

= ((6Q°'6")'6a’. (6Q ' (1G) ' Ga()) € M.

Note that #?_; is found as the function %% ;(X?_,) of an a priori unknown
initial state (4.4) on the last step.
After substituting (4.8) in (4.7), we obtain an optimal value

T [1X2, +BAY_y (X2y) -~ T*"*Q 1l
= |IT*||- IMX2_, —~MT*"1Q " pl|,, (4.10)
M =E-BN, E = (En,E,) (Ed =d € M>).

Direct check proves that M2 = M, (BN)? = BN,

o~ o~

(Md,d), = (@,Ma)y,  (BNG,a), = (a,BNG),. (4.11)

That is, M,BN : M> — M, are in terms of a scalar product (-,-)o the opera-
tors of orthogonal projection (orthoprojectors). The result of the influence of
BN on the element @ € M is an orthogonal projection of a to BM>, and M
orthogonally projects on (BM>»)* c M. Norms of M and BN as operators are
equal to 1. Indeed, the projection is not longer than a projected element, and
on the projecting subspace, this operator is unit. A right part of (4.10) can be
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estimated now by the inequality
T IXy =Tl
=T IT*XP, + T*Baf_, - T 1Q ' B, (4.12)
<|ITH|P - 11X + BAY_, — T*72Q -
In the same way, as with (4.7) and (4.8), the last estimation can be optimized:

Wy, (X)) = N(T*2Q 7' p - X1,). (4.13)

Continuing this process, we obtain 7% (X?) = N(T*/Q 5 — X?).

Now start moving backward. An initial state X? is known (X} = 0). Thus, ! =
NT*Q~'p, and due to the dynamics of (4.4), X = T*BNT*Q 1. Substituting
avalue X9 in 719(X9), we get a representation i1 = NT*MT*Q !5, and so on.
Finally,

N
IA
.
IA
X

Xy=0, X0=TWS-T*(MT*)"™'S, §=T*Q'p
‘ (4.14)

s
9=kY, =NT*5, 9=k ; =NT*(MT*)""'5, 2<j<r-1.
Thus, an optimization strategy on each estimation step allows getting an ex-
plicit solution. An operation T* on the base of integrating a conjugate system
(2.3) with different a is considered relatively simple. This strategy is approxi-
mate (suboptimal). An optimality criteria is as follows:

A = [[d- X2l = ||T* (MT*)"'5 (4.15)

ly

If Ay = 0, then the values of J = (P, X,n)m,, while using J;, /21 = I;(;, are precisely
determined (F;, =0, J =1, —y, and ¢ = 1).

5. Some generalizations. (1) Assume that the movement equations are given
in more general terms of a Stieltjes integral with a matrix function () (®#(0) =
®(0-0) on (—h,0)). The elements of & are of bounded variation on the seg-
ment [—h,0]. Then the conjugate system (2.3) appears as

0
V(t) = th [do (0)]V(t-0)+Q(t)a(t), te[-h,0], (5.1)

V(0)=-Q%°  V(s)=0,s¢[-h,0],

where

{é(—h), 0<-h,
®(0) = (5.2)
0, 0=>0.
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For (1.2),

N 0
®(0) == > X(—oo-hj1A; 7]9 A(T)dt, A(s)=0, s¢[-h,0]. (5.3)
j=0

Here, x is a characteristic function of a set.

(2) It is possible to add to the right parts of (1.2) and (1.4) the terms Du(t)
and Nv(t), respectively, (D, N are the matrices n X n,, m X m,), which will
describe perturbations in movement equations as well as measurement er-
rors. Together with the initial data, noises are unknown, but restricted. So,
W OHp) < g2, vie)vt) < v? llull, < pt, and [[vil, < v*. Instead of a pro-
jection (1.5), a more general functional

J = <ﬁ!52‘r‘h>M2 + (wyu)Lzy LZ = LZ([Olrh]’an) (54)

will be estimated. Then, instead of the element 4, it is necessary to consider a
set of three elements: z = (X, u, V), and represent J = J(z) and J; = J;(z) as

~

J= <T*ré_1ﬁ!X0>Q_ (B'b,u), —(D'b—w,u),,,
Ji = (@,%0) g — (B'bu)y, + (A, D),  bi(1)=0, 7€ ((r-1h,rh],
Ai= (N'kityeo s N'kiro1), 9= (Fhyeess Virion),
Vin = (v(jh),v(jh+")) € Mo,

(5.5)

where 1\72 =R™ X Ly([—h,0],R™). Concrete definitions of scalar products is
obtained from context. The calculation of § = T*"Q~'p, i, b(-), and b;(-)
gives information about how the functionals are immune to noises. For in-
stance, if Db(t) = w(t), then J is invariant to perturbations of movement.
Varying p and letting w = Db, we obtain a class of invariant functionals. In a
Hilbert space H = M X Ly X (]\72)’*1, the following representations hold:

J=4{9,2)u—-vy, Ji={(9i,2)y— i, g=(q,w-D'D,0), gi=(4i,—D'b;,A;).
(5.6)

How to estimate a functional I = (g, z) by the values I; = (gi,z) = «; is said
above (vector function u is given, thus ¢ and y; are also known).

(3) We consider a situation when a level of noises is low and is compared
to uncertainty of initial data. In this case, it is reasonable to realize an algo-
rithm not in extended phase space H, but in original M,. The calculated g,
b(-) and limitations of the noises allow representing a functional I in the form
I={(q,%0)+0,lol <d,0 =|lw-Dblu", {-,-) =(-,")q. In the same way,
I; = (i, X0) + 0y, |0i| < ;. Assuming then that & and &; are relatively small,
consider the problem of estimating the possible values of a functional (g, X)
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in M using the values (gqi,Xo), known up to i, and considering a restric-
tion (Xo,Xo) < k2. Instead of precise values B; = (g, Xo), it is necessary to use
known numbers «; = J; + ¢; = B; + 0; and an error estimation |o;| < J;. Instead
of

14 4
= Z -0j)zj, = Z ~0)E+0o -y (5.7)

(zj € My, (@i zj) = 6ij, & = (d,2;), &j = (2i,2;)) which are not known pre-
cisely, it is reasonable to use Zy = zy € M>, J« = J when o = 0j=0,j=1,¢
Calculating realized J; and the quantities «; = J; + ¢, we obtain

¢ 1/2
J<Ji+o+ max ZUJEJJFFI (K - 2 (Tj)&j) :

0jl=0; in1

(5.8)

or (more roughly)

¢ 1/2
]<J*+O'+Z |§J|0'J+F1(K - min > (O(i—o-i)(aj—o-j)gij> . (5.9

i \UJ\<UJ ij-1

A minimum of a square function on a parallelepiped can be found using nu-
merical methods. In the same way, a lower bound of J is obtained. It is possible
to make simplifications without calculating z; € M» (like above). In a case when
only measurements errors are relatively small, one should in the given way use
the elements g = {G,w —D’'b}, gi = {4i,—D'bi} € M» X L».

(4) It is possible to formulate the problem in probabilistic terms. Let x° be
a random vector, and let xo(T), u(t), and v(t) be vector random processes
with square integrable realizations (on the appropriate time segments). Then
functionals J and J; are random variables. Let some values of J; = y;, i = 1,4,
be realized. The given technique allows obtaining a mean squares estimation
of the form E(J — fi (y1,...,¥¢))? < fo(y1,...,y¢) (here E is for mean value) on
any possible sample y;. If f» is sufficiently small, then it is possible to identify
in terms of mean squares metrics a random variable J. To obtain an estima-
tion, it is enough to have statistical information about random elements of the
model E(z,z)y < @2

E(J—J.)* <F2F2, (5.10)
where

fi=le=L-y, f»=F{F;. (5.11)
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