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We use the technique of updating the solution to suggest and analyze a class of new
splitting methods for solving general mixed variational inequalities. It is shown
that these modified methods converge for pseudomonotone operators, which is a
weaker condition than monotonicity. Our methods differ from the known three-
step forward-backward splitting of Glowinski, Le Tallec, and M. A. Noor for solving
various classes of variational inequalities and complementarity problems. Since
general mixed variational inequalities include variational inequalities and com-
plementarity problems as special cases, our results continue to hold for these
problems.
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1. Introduction. Variational inequalities theory is a branch of applicable
mathematics with a wide range of applications in industrial, physical, regional,
social, pure, and applied sciences. Variational inequalities have been extended
and generalized in different directions using new and novel techniques. A use-
ful and significant generalization is called the general mixed variational in-
equality or variational inequality of the second type. In recent years, several
numerical methods for solving variational inequalities have been developed.
It is a well-known fact that the projection method and its variant forms, in-
cluding the Wiener-Hopf equations, cannot be extended for mixed variational
inequalities involving the nonlinear terms. These facts motivated us to use the
technique of the resolvent operators. In this technique, the given operator is
decomposed into the sum of two (or more) monotone operators whose resol-
vents are easier to evaluate than the resolvent of the original operator. Such
type of methods is called the operators splitting methods. This can lead to
the development of very efficient methods since one can treat each part of
the original operator independently. In the context of variational inequalities,
Noor [11, 12, 16, 17] has used the resolvent operator technique to suggest and
analyze some two-step forward-backward splitting methods. A useful feature
of the forward-backward splitting methods for solving variational inequalities
is that the resolvent step involves the subdifferential of the proper, convex,
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and lower semicontinuous part only, and other parts facilitate the problem
decomposition. If the nonlinear term involving the general mixed variational
inequalities is proper, convex, and lower semicontinuous, then it has been
shown that the general mixed variational inequalities are equivalent to the
fixed-point and resolvent equations. These alternative formulations have been
used to develop a number of iterative-type methods for solving mixed varia-
tional inequalities. Noor [11, 12, 15, 16, 17] used the technique of updating the
solution in conjunction with resolvent operator technique to suggest a num-
ber of splitting-type algorithms for various classes of variational inequalities.
It has been shown that the convergence of such type of splitting and predictor-
corrector type algorithms requires the partially relaxed strong monotonicity,
which is a weaker condition than cocoercivity. In this note, we suggest and
analyze a new class of forward-backward splitting algorithms for a class of
general mixed variational inequalities by modifying the associated fixed-point
equation. The new splitting methods are self-adaptive type methods involving
the line search strategy, where the step size depends upon the resolvent equa-
tion, and the searching direction is a combination of the resolvent residue and
the modified extraresolvent direction. Our results include the previous results
of Noor [11, 12, 15, 16, 17] for solving different classes of variational inequali-
ties as special cases. Our methods are different from those of Glowinski and Le
Tallec [4], which they suggested by using the Lagrange multiplier technique.
Haubruge et al. [6] have studied the convergence analysis of the three-step
schemes of Glowinski and Le Tallec [4] and applied these three-step iterations
to obtain new splitting-type algorithms for solving variational inequalities, sep-
arable convex programming, and minimization of a sum of convex functions.
They have also proved that three-step iterations lead to highly parallelized al-
gorithms under certain conditions. Using essentially the techniques developed
in [4, 6], one can obtain several new algorithms for solving variational inequal-
ities from our results. Our results can be viewed as novel applications of the
technique of updating the solution as well as a refinement and improvement
of previously known results.

2. Preliminaries. Let H be a real Hilbert space whose inner product and
norm are denoted by (-,-) and || - ||, respectively. Let K be a nonempty closed
convex setin H. Let @ : H -~ RU {+} be a function.

For given nonlinear operators T,g : H — H, consider the problem of finding
u € H such that

(Tu,g(v)—g(w)) +@(g(v)) -@(gu)) =0, Vg(v)eH. (2.1)

The inequality of type (2.1) is called the general mixed variational inequality
or the general variational inequality of the second kind. If the function @ (-)
is a proper, convex, and lower semicontinuous function, then problem (2.1) is
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equivalent to finding u € H such that
0eTu+op(g(u)), (2.2)

which is known as the problem of finding a zero of the sum of two (maximal)
monotone operators and has been studied extensively in recent years.

We remark that if g = I, where I is the identity operator, then problem (2.1)
is equivalent to finding u € H such that

(Tu,v—-u)+pw)—-@p(u)=0, Vv eH, (2.3)

which is called the mixed variational inequality. It has been shown that a
wide class of linear and nonlinear problems arising in finance, economics, cir-
cuit and network analysis, elasticity, optimization, and operations research
can be studied via the mixed variational inequalities (2.1) and (2.3). For the
applications, numerical methods, and formulations, see [1, 2, 3, 4, 5, 6, 9, 10,
11, 12,15, 16, 20].

We note that if @ is the indicator function of a closed convex set K in H,
that is,

0, if u ek,
@ u) =Ix(u) —{ (2.4)

+o00, otherwise,
then problem (2.1) is equivalent to finding u € H, g(u) € K such that
(Tu,g(v)-gu)) =0 Vg(v) k. (2.5)

The inequality of type (2.5) is known as the general variational inequality,
which was introduced and studied by Noor [7]. It turned out that the odd-
order and nonsymmetric free, unilateral, obstacle, and equilibrium problems
can be studied by the general variational inequality (2.5), see [7, 8, 9, 14, 18].

From now on, we assume that the operator g is onto K and g~! exists unless
otherwise specified.

IfK*={ueH:(u,v)=0,forall veK} isapolar cone of a convex cone K
in H, then problem (2.5) is equivalent to finding u € H such that

gu) €K, TuekKk*, (Tu,g(u))=0, (2.6)

which is known as the general complementarity problem, which was intro-
duced and studied by Noor [7]. We note that if g(u) = u —m(u), where m is
a point-to-point mapping, then problem (2.6) is called the quasi-implicit com-
plementarity problem, see the references for the formulation and numerical
methods.

For g = I, where I is the identity operator, problem (2.5) collapses to finding
u € K such that

(Tu,v—u)=0, Vvek, (2.7)
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which is called the standard variational inequality, introduced and studied by
Stampacchia [19]. For the recent state of the art, see the references.

It is clear that problems (2.3), (2.5), (2.6), and (2.7) are special cases of the
general mixed variational inequality (2.1). In brief, for a suitable and appro-
priate choice of the operators T, g, and @ and the space H, one can obtain
a wide class of variational inequalities and complementarity problems. This
clearly shows that problem (2.1) is a quite general and unifying one. Further-
more, problem (2.1) has important applications in various branches of pure
and applied sciences, see the references.

We now recall some well-known concepts and results.

DEFINITION 2.1. For all u,v,z € H, an operator T : H — H is said to be
(i) g-monotone if

(Tu-Tv,g(u)—g)) = 0; (2.8)
(ii) g-pseudomonotone if
(Tu,g(v)—gu)) 2 0= (Tv,g(v)—g(u)) = 0. (2.9)

For g = I, where [ is the identity operator, Definition 2.1 reduces to the
classical definition of monotonicity and pseudomonotonicity. It is known that
monotonicity implies pseudomonotonicity but the converse is not true, see
[2]. Thus we conclude that the concept of pseudomonotonicity is weaker than
monotonicity.

DEFINITION 2.2. If A is maximal monotone operator on H, then, for a con-
stant p > 0, the resolvent operator associated with A is defined as

Jaw)=UI+pA) (), VYveH, (2.10)

where I is the identity operator. It is well known that the operator A is maximal
monotone if and only if the resolvent operator J 4 is defined everywhere on the
space. The operator J4 is single valued and nonexpansive.

REMARK 2.3. It is well known that the subdifferential d¢@ of a proper, con-
vex, and lower semicontinuous function @ : H - RU {0} is a maximal mono-
tone operator, so

Jow) =I+0@) ' (u), VuecH, (2.11)

is the resolvent operator associated with o and is defined everywhere.
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LEMMA 2.4. For a given z € H, u € H satisfies
(u-z,2v—u)+ppw)—pep(u) =0, VveH, (2.12)
if and only if
u=Jpz, (2.13)

where ], is the resolvent operator.

We remark that if the proper, convex, and lower semicontinuous function
@ is an indicator function of closed convex set K in H, then J, = Pk, the
projection of H onto K. In this case, Lemma 2.4 is equivalent to the projection
lemma, see [1].

3. Main results. In this section, we use the resolvent operator technique
to suggest a modified resolvent method for solving general mixed variational
inequalities of type (2.1). For this purpose, we need the following result, which
can be proved using Lemma 2.4.

LEMMA 3.1. The general mixed variational inequality (2.1) has a solution
u € H if and only if u € H satisfies

gu) =Jplgu)—pTul, (3.1)

where Jo, = (I+pd@)~1 is the resolvent operator.

Lemma 3.1 implies that problems (2.1) and (3.1) are equivalent. This alterna-
tive equivalent formulation has played an important part in suggesting several
iterative methods for solving general mixed variational inequalities and related
problems, see [4, 5, 6,11, 12, 14, 15, 16, 17].

In recent years, the technique of updating the solution has been used to
suggest and analyze a number of iterative methods for solving variational in-
equalities. The main idea in this technique is to modify the resolvent method
by performing an additional step forward and a resolvent at each iteration.
Using the technique of updating the solution, one can rewrite (3.1) in the form

gu) =Jplg(w)-pTw], (3.2)
gw) =Jplg(y)-pTy], (3.3)
g =Jplgu) —pTul. (3.4)

Invoking Lemma 3.1, one can easily show that u € H is a solution of (2.1) if
and only if u € H is a zero of the equation

gu) - Jplg(w)—pTw] = 0. (3.5)
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We now define the resolvent residue vector by
R(u) =gu) —Jplg(y)-pTy]=gu)-g(w), (3.6)

where g () is defined by (3.4) and g(w) by (3.3).
From Lemma 3.1, it follows that u € H is a solution of (2.1) if and only if
Uu € H is a zero of the equation

R(u) =0. (3.7)

The above fixed-point formulation is used to suggest and analyze the following
iterative methods for solving general mixed variational inequalities (2.1).

ALGORITHM 3.2. For a given uy € H, compute the approximate solution
Un+1 by the iterative schemes

g(yn) = Jq)[g(un) _pTun].
g(wn) =Jplg(vn) —pTyn]

, (3.8)
g(un+1):J§U[g(wn)_pTwn]v n:O,l,Z,...,

which is known as the predictor-corrector method, see Noor [16].

ALGORITHM 3.3. For a given uy € H, compute the approximate solution
Un+1 by the iterative scheme

g(uT’H—l) :J(P[I_pTgil]J(P[I_pTgil]J(P[I_pTgil]g(un)’ n= 011v21"'1
(3.9)

which is known as the three-step forward-backward splitting algorithm. Note
that the order of T and J, has not been changed. This method is compatible
with the three-step forward-backward splitting algorithm of Glowinski and Le
Tallec [4]. For the convergence analysis of Algorithm 3.3, see Noor [16] and
Haubruge et al. [6].

By rearranging the terms, one can use the fixed-point formulation (3.2), (3.3),
and (3.4) to suggest and analyze the following method for solving the general
mixed variational inequalities of type (2.1).

ALGORITHM 3.4. For a given ug € H, compute u,; by the iterative scheme

Guni1) =T +pTg™") HIplI-pTg  1Jpll-pTg 1JplI-pTg "]

(3.10)
+pTg Yg(u,), n=0,1,2,...,

which is again a three-step forward-backward splitting-type method and can
be considered as a generalization of an algorithm of Tseng [20] and Noor [16].
Noor [13] has studied the convergence of Algorithms 3.2, 3.3, and 3.4 for the
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partially relaxed strongly monotone operator, which is a weaker condition than
cocoercivity.

In this note, we suggest another method involving the line search strategy,
which includes these splitting-type methods as special cases.
For a given positive constant «, we rewrite (3.1), using (3.2), (3.3), and (3.4),
in the following form:
g) =Jplg(w) —a{g(u) -gw) +pTw}]
=Joplg(u) — x{R(u) + pTw}] (3.11)
=Jplgu) - ad(u)],

where
duw)=Rw)+pTw=Rw)+pTg 'Jplg(y)-pTy]. (3.12)

This fixed-point formulation enables us to suggest the following iterative
method for general mixed variational inequalities of type (2.1).

ALGORITHM 3.5. For a given uy € H, compute the approximate solution
Un-+1 by the following iterative schemes.

PREDICTOR STEP

(3.13)
g(wy) = Jo [9(Vn) —pPnTynl,
where p,, satisfies
Pn{Tun—Twy,R(uy)) < J{|R(un)||2, oe(0,1). (3.14)
CORRECTOR STEP
9(Uns1) = Jo [9(un) —xnd(un)], n=0,1,2,..., (3.15)
where
d(un) = R(un) + pnTwy
. (3.16)
=R(un) +pnTg Jq)[g(yn) —pnTyn],
o(n — <R(un)aD(7/;n)> , (317)
[l (wn)||
D(un) =R(un) = pnTun+pnTwy
(3.18)

=R(un) = pnTun+pnTg ' Jpg(Vn) = PnTyn],

where «;, is the corrector step size.
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If the proper, convex, and lower semicontinuous function ¢ is an indicator
function of a closed convex set K in H, then J, = Pk, the projection of H onto
K, and, consequently, Algorithm 3.5 collapses to the following algorithm.

ALGORITHM 3.6. For a given uy € H, compute the approximate solution
Un+1 by the following iterative schemes.
PREDICTOR STEP

g(wn) =Px[g(yn) —pnTynl, 319

where p,, satisfies
pn{Tn - Twn,R(un)) < o||R(wn)|]°, o €(0,1). (3.20)

CORRECTOR STEP
g(uns1) = Px[g(un) - otndi (un)], n=0,1,2,..., (3.21)
where
d1(un) =R(un) +pnTwny,

o, = \R(tn). D1 (tn)) (3.22)

1 (un) |
D1 (un) = R(uy) — pnTuy + pnTwy,.

Algorithm 3.6 appears to be a new one even for general variational inequality
(2.5). Note that, for o, = 1, Algorithm 3.5 is exactly Algorithm 3.2, which is
mainly due to Noor [16]. For g = I, where I is the identity operator, we obtain
new improved versions of algorithms for variational inequalities and related
optimization problems. This clearly shows that Algorithm 3.5 is a unifying one
and includes several known and new algorithms as special cases.

For the convergence analysis of Algorithm 3.5, we need the following results.

LEMMA 3.7. Ifu € H is a solution of (2.1) and T is g-pseudomonotone, then
(gw) —g),dw)) = 1-0)||Rw)|°, YueH. (3.23)
PROOF. Let 7t € H be a solution of (2.1). Then

(T,g(v)—g@)) +@(g(v))—pg(i) =0, Vv eH, (3.24)
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which implies
(Tv,g(v)—g(m)) +@(g(v)) —@(g(@)) =0 (3.25)

since T is g-pseudomonotone.
Taking g(v) = Jo[g(y) —pTy] =g(w) in (3.25), we have

(Tw,g(w)-g(@))+@(g(w))-@(g(m)) =0, (3.26)

from which we have

(gu)—g(@),pTw) = p(R(u), Tw)+pp(g()) —p(g(w)). (3.27)
Setting u = g(w), z=g(u)—pTu,and v = g(ii) in (2.12), we have

(g(w)—gu)+pTu,g(@) —g(w))+pp(g(@)) —pp(g(w)) =0, (3.28)
from which we obtain

(g(u)—g@),R(u)) = (R(u),R(u) —pTu) —pp(g(@)) +pp(gw))
+p(Tu,g(u)—g()) (3.29)
> (R(u),R(u) - pTu) - pp(g)) +pp(g(w)),

where we have used the fact that the operator T is pseudomonotone.
Adding (3.27) and (3.29), we have

(gw)—g@),R(u) +pTw) = (g(u) —g(@),d(u))
> (R(u),D(u))
=(R(u),R(u)—pTu+pTw) (3.30)
>||Rw)|)* = p(R(u), Tu-Tw)
> (1-0)||[Rw)||* using (3.14),

which is the required result. ]

LEMMA 3.8. Letii € H be a solution of (2.1) and let u,,+1 be the approximate
solution obtained from Algorithm 3.5. If T is g-pseudomonotone, then

(1-0)2||R (un)|[*

[ ()|

19 (nir) —g@||* < ||lg(un) —g@|* - (3.31)
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PROOF. From (3.15), (3.17), (3.23), and the second line of (3.30), we have

19 (uni1) =g @ |’ <19 (wn) =g (@) - ctnd (un)||*
<19 (un) ~g(D|]* = 2062 (g (1n) = g (@), d (un))
+ o3| (un)|*
< |lg(un) —g(@|* = & (R (un),D (1)) (3.32)
< g (un) - g(@)|[* = otn (1= )[R ()|

~(1-0)?|[R(un)|I*
1 (wn)|]*

<lg(un) —g@|f

which is the required result. O

THEOREM 3.9. Let g:H — H be invertible and let H be a finite-dimensional
space. If un.1 is the approximate solution obtained from Algorithm 3.5 and
1 € H is a solution of (2.1), then lim,, ., u,, = .

PROOF. Let 7 € H be a solution of (2.1). From (3.31), it follows that the
sequence {||g(it) — g(uy)|l} is nonincreasing and, consequently, {g(u,)} is
bounded. Under the assumptions of g, it follows that the sequence {u,} is
also bounded. Furthermore, we have

[

4
I

)2
> L= IRGIIE 15 () - g (a0 (3.33)
nmo  ld(un)ll

which implies that

lim R (uy,) = 0. (3.34)

n—oo

Let 71 be the cluster point of {u,}, and the subsequence {unj} of the sequence
{u,} converges to it € H. Since R(u) is continuous, so

R(1l) = limR(unj) =0, (3.35)

J—

which implies that 7t solves the general mixed variational inequality (2.1) by
invoking Lemma 3.1. From (3.31) and (3.34), it follows that

19 (Uns1) —g@])* < |lg (un) —g@)||*. (3.36)

Thus it follows from the above inequality that the sequence {u,} has exactly
one cluster point 7 and

lim g(uy) = g(it). (3.37)

n—oo
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Since g is invertible, so

lim (u,) =4, (3.38)
which is the required result. |
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