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We discuss unsuspected relations between Maxwell, Dirac, and the Seiberg-Witten
equations. First, we present the Maxwell-Dirac equivalence (MDE) of the first kind.
Crucial to that proposed equivalence is the possibility of solving for ¢ (a repre-
sentative on a given spinorial frame of a Dirac-Hestenes spinor field) the equation
F = ¢y21 ¥, where F is a given electromagnetic field. Such task is presented and
it permits to clarify some objections to the MDE which claim that no MDE may
exist because F has six (real) degrees of freedom and ¢ has eight (real) degrees
of freedom. Also, we review the generalized Maxwell equation describing charges
and monopoles. The enterprise is worth, even if there is no evidence until now
for magnetic monopoles, because there are at least two faithful field equations
that have the form of the generalized Maxwell equations. One is the generalized
Hertz potential field equation (which we discuss in detail) associated with Maxwell
theory and the other is a (nonlinear) equation (of the generalized Maxwell type)
satisfied by the 2-form field part of a Dirac-Hestenes spinor field that solves the
Dirac-Hestenes equation for a free electron. This is a new result which can also be
called MDE of the second kind. Finally, we use the MDE of the first kind together
with a reasonable hypothesis to give a derivation of the famous Seiberg-Witten
equations on Minkowski spacetime. A physical interpretation for those equations
is proposed.

2000 Mathematics Subject Classification: 81Q05, 81R25, 15A66.

1. Introduction. In [1, 2, 3, 4, 5], using standard covariant spinor fields,
Campolattaro proposed that Maxwell equations are equivalent to a nonlinear
Dirac-like equation. The subject has been further developed in [35, 39] using
the Clifford bundle formalism, which is discussed together with some of its
applications in a series of papers, for example, [11, 12, 13, 17, 18, 19, 22, 26,
28, 29, 30, 35, 39, 40]. The crucial point in proving the Maxwell-Dirac equiva-
lence (MDE) starts once we observe that to any given representative of a Dirac-
Hestenes spinor field (for more information, see Section 2, and for details, see
(17, 22, 26, 30]) @ € sec[A\°(M) + A\*(M) + A*(M)] C sec®l (M, g), there is an
associated electromagnetic field F € sec /\2 (M) C sec6l(M,g) (F? # 0) through
the Rainich-Misner theorem [25, 35, 39, 40] by

F=yyay. (1.1)
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Before proceeding, we recall that for null fields, that is, F2 = 0, the spinor
associated with F through (1.1) must be a Majorana spinor field [17, 18, 39],
but we do not need such concept in this paper. Now, since an electromagnetic
field F satisfying Maxwell equation has six degrees of freedom and a Dirac-
Hestenes spinor field has eight (real) degrees of freedom, some authors felt
uncomfortable with the approach used in [35, 40], where some gauge con-
ditions have been imposed on a nonlinear equation (equivalent to Maxwell
equation), thereby transforming it into usual linear Dirac equation (called the
Dirac-Hestenes equation in the Clifford bundle formalism). The claim, for exam-
ple, in [14] is that the MDE found in [35, 40] cannot be general. The argument
is that the imposition of gauge conditions implies that an y satisfying (1.1)
can have only six (real) degrees of freedom, and this implies that the Dirac-
Hestenes equation corresponding to Maxwell equation can be only satisfied by
a restricted class of Dirac-Hestenes spinor fields, namely, the ones that have
six degrees of freedom.

Incidentally, in [14], it is also claimed that the generalized Maxwell equation

aF:Je"‘YSJm (1-2)

(where J,, Jm € sec\' (M)) describing the electromagnetic field generated by
charges and monopoles [19] cannot hold in the Clifford bundle formalism be-
cause according to that author the formalism implies that J,,, = 0.

In what follows, we analyze these claims of [14] and prove that they are
wrong (Section 3). The reasons for our enterprise is that, as will become clear
in what follows, understanding (1.1) and (1.2) together with some reasonable
hypothesis permits a derivation and even a possible physical interpretation of
the famous Seiberg-Witten monopole equations [21, 24, 36]. So, our plan is the
following. First we introduce in Section 2 the mathematical formalism used in
the paper, showing how to write Maxwell and Dirac equations using Clifford
fields. We also introduce Weyl spinor fields and parity operators in the Clifford
bundle formalism. In Section 3, we prove that, given F in (1.1), we can solve
that equation for y, and we find that ¢ has eight degrees of freedom, two of
them being undetermined, the indetermination being related to the elements
of the stability group of the spin plane y»;. This is a nontrivial and beautiful
result which can called inversion formula. In Section 4, we introduce a gener-
alized Maxwell equation, and in Section 5, we introduce the generalized Hertz
equation. In Section 6, we prove a mathematical Dirac-Maxwell equivalence of
the first kind [2, 35], thereby deriving a Dirac-Hestenes equation from the free
Maxwell equations. In Section 7, we introduce a new form of a mathematical
Maxwell-Dirac equivalence (called MDE of the second kind) different from the
one studied in Section 6. This new MDE of the second kind suggests that the
electron is a “composite” system. To prove the MDE of the second kind, we
decompose a Dirac-Hestenes spinor field satisfying a Dirac-Hestenes equation
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in such a way that it results in a nonlinear generalized Maxwell-like equation
(see (7.1)) satisfied by a certain Hertz potential field, mathematically repre-
sented by an object of the same mathematical nature as an electromagnetic
field, that is, IT € sec /\Z(M ) C sec¢l(M). This new equivalence is very sug-
gestive in view of the fact that there are recent (wild) speculations that the
electron can be split into two components [6] (see also [38]). If this fantastic
claim announced by Maris [21] is true, it is necessary to understand what is
going on. The new MDE presented in Section 6 may eventually be useful to
understand the mechanism behind the “electron splitting” into electrinos. We
are not going to discuss these ideas here. Instead, we concentrate our atten-
tion in showing in Section 8 that the analogous on Minkowski spacetime of the
famous Seiberg-Witten monopole equations arises naturally from the MDE of
the first kind once a reasonable hypothesis is imposed. We also present a pos-
sible coherent interpretation of those equations. Indeed, we prove that when
the Dirac-Hestenes spinor field satisfying the first of Seiberg-Witten equations
is an eigenvector of the parity operator, then that equation describes a pair
of massless monopoles of opposite magnetic-like charges, coupled together
by its interaction electromagnetic field. Finally, in Section 9, we present our
conclusions.

2. Clifford and spin-Clifford bundles. Let.it=(M,g,D) be Minkowski space-
time. The pair (M, g) is a four-dimensional, time-oriented, and space-oriented
Lorentzian manifold, with M = R* and g € secT%?M being a Lorentzian met-
ric of signature (1,3). Let T*M [TM] be the cotangent [tangent] bundle. Let
T*M = UxemTiM, TM = Uxey T M, and TyM ~ T M ~ RY3, where R'3 is the
Minkowski vector space. Let D be the Levi-Civita connection of g, that is,
Dg =0, R(D) = 0. Also T(D) = 0, R and T being, respectively, the torsion
and curvature tensors. Now, the Clifford bundle of differential forms ¢ (M) is
the bundle of algebras, that is, €¢(M,g) = Uxen6l (T} M), where for all x € M,
GL(TM) =64, 3, the so-called spacetime algebra. Recall also that ¢£(M, g) is
a vector bundle associated to the orthonormal frame bundle, that is, ¢ (M, g)
= Pso, ;3 Xad €13 [22, 26]. For any x € M, ‘6£(T} M) is a linear space over the
real field R. Moreover, 6£(T; M) is isomorphic to the Cartan algebra A\ (T M)
of the cotangent space and A(TFM) = Zi:o /\k(T;‘M), where /\k(T;‘M) is the
(ﬁ)-dimensional space of k-forms. Then, sections of ¢£(M,g) can be repre-
sented as a sum of nonhomogeneous differential forms. Let (x*) be Lorentz
coordinate functions for M and let {e,} € secFM (the frame bundle) be an
orthonormal basis for TM, that is, g(e,,ev) = Ny = diag(1,-1,-1,-1). Let
yY =dxY € sec/\l(M) c sec6lf(M,g) (v =0,1,2,3) such that the set {yv} is
the dual basis of {e,}. Moreover, we denote by g the metric in the cotangent
bundle.

2.1. Clifford product. The fundamental Clifford product (in what follows to
be denoted by juxtaposition of symbols) is generated by y#yY + yYy# = 2n*v
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and if € € sec¢f(M,g), we have

1 1
‘6=s+vuy“+Ebwy“y"+iaw,py“y"y‘”rpys, (2.1)
where y° = yOyly?y3 = dx%dx'dx?dx? is the volume element and s,v,, by,
Auvp, and p € sec \* (M) C secel (M, g).
Let A, € sec\" (M) and B, € sec \*(M). For r = s = 1, we define the scalar
product as follows:

a-b= %(ab+ba) =g(a,b) (2.2)

fora,b € sec /\1 (M) C sec6l(M,g).We define also the exterior product (Vr,s =
0,1,2,3) by

Ay AB; = (A,By) Ay ABs=(=1)" By A A,, (2.3)

r+sy
where () is the component in A\¥(M) of the Clifford field. The exterior product
is extended by linearity to all sections of ¢£(M,g).

For Ay =ayA---Aay, B =by A--- Aby, the scalar product is defined here
as follows:

al'bl al.by
A By =(a1A---nay)-(biA-+-Aby) = : : : . (24

ar-by -+ a,-by

We agree that if » = s = 0, the scalar product is simply the ordinary product
in the real field.

Also, if  # s, then A, - B; = 0. Finally, the scalar product is extended by
linearity to all sections of 6£(M, g).

Forr <s,A, =ai1A---Aay,Bs = b1 A---Abg, we define the left contraction
by

J:(AraBs)‘_’ArJBS: Z Eil"'if(a1A---Aar)
i1<--<iy (2.5)
' (bil ARE /\biS)Nbir+l AN /\hiss

where ~ is the reverse mapping (reversion) defined by

p
~isec \(M)SaiA---Aap —apA---Aax (2.6)

and extended by linearity to all sections of €£(M,g). We agree that for «, €
sec /\O(M ), the contraction is the ordinary (pointwise) product in the real field
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and thatif « € sec/\O(M), A, € sec \" (M), and B; € sec \* (M), then (xA,) ,Bs =
Ay, (xBy). The left contraction is extended by linearity to all pairs of elements
of sections of €¢(M, g), that is, for A,B € sec¢l (M, g),

A,B=>(A),,(B)s, T=s. (2.7)

It is also necessary to introduce the operator of the right contraction de-
noted by .. The definition is obtained from the one presenting the left con-
traction with the imposition that » > s and taking into account that now if
A, e sec\" (M), B; € sec\* (M), then A, , (xBs) = (xA,) Bs.

The main formulas used in the Clifford calculus can be obtained from the
following ones (where a € sec /\1 (M) C sec6l(M,g)):

aBs = a,Bs+a A Bg, Bsa=Bs.a+Bs A a,

a,Bs = %(aBs - (_)SBsa)y

ATJ s = (_)7(571>Bs LAT!

anB;s = %(aBﬁ—(—)SBSa), (2.8)

AyBs = (ArBs) |y _g + {Ar Bs) jp_s_p T+ =+ (ArBs) g

M3z

(ArBs) |y g4 2k-

k=0

2.1.1. Hodge star operator. Let x be the Hodge star operator, that is, the
mapping

k 4-k
i ANM) — N (M),  Ag— *Aqg, (2.9)

where for Ay € sec/\k(M) csec6l(M,g),
k
[B- Ak]Ty = Bk A xAx,  VBg € sec /\ (M) C sec6l(M). (2.10)
In (2.10), T4 € /\4 (M) is a standard volume element. Then we can verify that

* Ay = Agy®. (2.11)

2.1.2. Dirac operator. Let d and 6 be, respectively, the differential and
Hodge codifferential operators acting on sections of A\(M).If A, € sec AP (M)
sec@l(M), then §A, = (—)? x1d x A,, with » 1 x = identity.

The Dirac operator acting on sections of € (M, g) is the invariant first-order
differential operator

0=y"D,,, (2.12)
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where {e,} is an arbitrary orthonormal basis for TU ¢ TM and {y}} is a basis
for T*U c T*M dual to the basis {e,}, that is, y?(es) = 6%, a,b = 0,1,2,3.
The reciprocal basis of {y?} is denoted by {y,} and we have y. - ¥» = Nap
(nap = diag(1,-1,—-1,-1)). Also,

Doy’ = —wheye. (2.13)
Defining
1
Wa = 5 WG Y AYe, (2.14)

we have that for any A, € sec A" (M), p =0,1,2,3,4,

1
DegA = ea+ 5 [wa,Al. (2.15)

Using (2.15), we can show the very important result
0A, =0NA,+0,A, =dA,—5A,,

2.1
dNA, =dA,,  8,A,=—0A,. (2.16)

2.2. Dirac-Hestenes spinor fields. Now, as is well known, an electromag-
netic field is represented by F € sec /\2 (M) c sec¢f(M,g). How can we repre-
sent the Dirac spinor fields in this formalism? We can show that Dirac-Hestenes
spinor fields do the job. We give here a short introduction to these objects
(when living on Minkowski spacetime) which serves mainly the purpose of fix-
ing notations. For a rigorous theory of these objects (using vector bundles) on
a general Riemann-Cartan manifold see [22]. Recall that there is a 2 : 1 map-
ping s’ : @ — & between %, the set of all orthonormal ordered vector frames,
and @', the set of all spin frames of T*M. As discussed at length in [22, 26], a
spin coframe can be thought of as a basis of T*M such that two ordered bases,
even if consisting of the same vectors but with the spatial vectors differing by
a 277 rotation, are considered distinct, and two ordered basis, even if consist-
ing of the same vectors but with the spatial vectors differing by a 41 rotation,
are identified. For short, in this paper, we simply call the spin coframes spin
frames. Also, vector coframes are simply called vector frames in what follows.

Consider the set ¥ of mappings

M > x — u(x) € Spin, (1,3) = SL(2,C). (2.17)

Choose a constant spin frame {y,} € B,a = 0,1, 2,3, and choose Ey € ®" corre-
sponding to a constant mapping uy € ¥. By constant we mean that the equation
Yu(x) = yu(y) ((u=0,1,2,3) and uo(x) = uo(y), Vx,y € M) has meaning
due to the usual affine structure that can be given to Minkowski spacetime.
B0,Ey4 € O are related as follows:

uos (Eo)ug! = us'(,)ut. (2.18)
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From now on, in order to simplify the notation, we take 1y = 1. The frame
s’ (Eg) = {ya} is called the fiducial vector frame and Z the fiducial spin frame.
We note that (2.18) is satisfied by two such u’s differing by a signal, and, of
course, 8’ (E,) =8 (E_y).

Let

.
T={(Bu,¥s,) lUEY, By €O, Y5, €sec \M Csecel™(M,g)}, (2.19)

where A\*M = \°M + \° M+ \* M.
We define an equivalence relation on T by setting

(Bu,¥s,) ~ (Bur,¥g,,) (2.20)
if and only if
us' (B )ut =u'"'s'(By)u’, Yz, =VYe,uu'"l (2.21)

DEFINITION 2.1. Any equivalence class [(E,, ¥z, )] will be called a Dirac-
Hestenes spinor field (DHSF).

Before proceeding, we recall that a more rigorous definition of a DHSF as
a section of a spin-Clifford bundle is given in [22]. We will not need such a
sophistication in what follows.

Note that the pairs (E,,¥s,) and (E_,,—¥s_,) are equivalent but the pairs
(Ey,¥s,) and (E_,¥=_, ) are not. This distinction is essential in order to give
a structure of linear space (over the real numbers) to the set J. Indeed, such a
linear structure on 7 is defined as follows:

al(Buy, Yoy, ) |+ b[(Buy, Yay,) | = [(Buy,a¥e,, )]+ [(Bu,, bYe,, )],
(a+b)[(Buy, ¥z, )] = al(Buy, Yoy, )] + P[(Buy, Y2y, )], a,b €R.
(2.22)

We can simplify the notation by recalling that every u € ¥ determines, of
course, a unique spin frame Z,;,. Taking this into account, we consider the set
of all pairs (u,¥s,) € ¥ xsec€l* (M, g).

We define an equivalence relation % in & x sec¢f*(M,g) as follows. Two
pairs (u,¥z,), (u',¥z,,) € secF x sec6l*(M,g) are equivalent if and only if

‘Pgu,'u, = \Ilguu. (223)
Of course, s'(E,/) = vs'(Ey)v ! with v = (/) 'u € ¥. Note that the pairs

(u,¥s,) and (—u,—¥s,) are equivalent but the pairs (u, ¥z, ) and (-u,¥s,) are
not.
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Denote by & x sec6£* (M, g) /R the quotient set of the equivalence classes
generated by %. Their elements are called Dirac-Hestenes spinors. Of course
this is the same definition as above.

From now on, we simplify even more our notation. In this way, if we take
two orthonormal spin frames s'(E) = {y#} and s’ () = {y* = Ry“ﬁ =Abyv}
with A% € S0°(1,3) and R (x) € Spin®(1,3) for all x € M, RR = RR = 1, then we
simply write the relation (2.23) between representatives of a Dirac-Hestenes
spinor field in the two spin frames as the sections @z and gy of €€+ (M,g)
related by

Wz = Y=R. (2.24)
n
Recall that since @z € sec AM C sec6f* (M, g), we have

1
Wz =s+ 5 bwy'y” +py°. (2.25)

Note that = has the correct number of degrees of freedom in order to rep-
resent a Dirac spinor field and recall that the specification of @z depends on
the spin frame E. To simplify even more our notation, when it is clear which
is the spin frame E, and no possibility of confusion arises, we simply write
instead of s.

When g = 0, where ~ is the reversion operator, we can show that ¢ has
the following canonical decomposition:

W = ./pePys/?R, (2.26)

where p, B € sec \°(M) c sec6f(M,g) and R(x) € Spin®(1,3) C @y 5, for all
x € M. The function f is called the Takabayasi angle. If we want to work in
terms of the usual Dirac spinor field formalism, we can translate our results
by choosing, for example, the standard matrix representation of the 1-form
{yH} in C(4) (the algebra of the complex 4 x 4 matrices), and for ys given by
(2.14), we have the following (standard) matrix representation [26, 30]:

Y1 —Ps Y3 Yl
Yo Wi oYs —y3
Y3 Wiy —y;
Ys —@3 Y2 gy

) (2.27)

where i (x) € C, k=1,2,3,4, and for all x € M.

We recall that a standard Dirac spinor field is a section ¥p of the vector
bundle Pgpine(q,3) Xa C(4), where A is the D(1/2,0) @ D(0,1/2) representation
of SL(2,C) ~ Spin®(1,3). For details see, for example, [22, 26]. The relation
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between ¥ and y is given by

Y1 s—iby2
(V2 —bi3—1ib23
¥Yp = = . , 2.28
P Y3 —bo3 +ip ( )
(/N —bo1 —ibo2

where s, biy, ... are the real functions in (2.25) and * denotes the complex
conjugation.

We recall that the even subbundle €¢£*(M,g) of 6 (M,g) is such that its
typical fiber is the Pauli algebra € {3 = f@#h (which is isomorphic to C(2), the
algebra of 2 x 2 complex matrices). Elements of %#fﬁ are called biquaternions
in the old literature. The isomorphism 6#;, = <€€f3 is exhibited by putting
0i = yiYo, whence 0,0, + d;0; = 26;j. We recall also that the Dirac algebra is
@04 =C(4) and 6Ly; = CRCl; 3.

Consider the complexification ¢fc (M, g) of ¢£(g) called the complex Clifford
bundle. Then¢fc(M,g) = Co%L (M, g), and we can verify that the typical fiber
of 60c(M,g) is 6Ly, = C®6l 3, the Dirac algebra. Now let {Ag,A1,A2,A3,A4}
C sec6lc(M,g) be, for all x € M, an orthonormal basis of ¢£4;. We have

AgAp +ApAg =29ap, Gap = diag(+1,+1,+1,+1,-1). (2.29)

We identify y, = A,A4 and call I = AgA1A2AzA,. Since I? = -1 and I com-
mutes with all elements of 64, we identify I with i = /-1 and y, with
a fundamental set generating the local Clifford algebra of €£(M,g). Then if
A € secelc(M,g), we have

_ u 1wy L _uvp
A =D +AcYu+§BC Yu%/“’g-rc YuYvyv +®pys, (2.30)
where ®;,®,, A, BE T € secCo® N\’ (M) c sec®lc(M,g), that is, for all x €
M, ®5(x), ®p(x), AL(x), B (x), and 747 (x) are complex numbers.

Now, it can be verified that

(1+iy1y2), f*=1f, (2.31)

f=51+yo)

N | =
N | —

is a primitive idempotent field of ¢fc(M,g). We can also verify without diffi-

culty that if = y>y1 f.

Appropriate equivalence classes (see [22, 26]) of €{c(M,g) f are represen-
tatives of the standard Dirac spinor fields in ¢fc(M,g). We can easily show
that the representation of ¥p in €{c (M, g) is given by

Yp=yf, (2.32)

where  is the Dirac-Hestenes spinor field given by (2.25).
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2.3. Weyl spinors and parity operator. By definition, ¢ € sec6f* (M, g) is
a representative of a Weyl spinor field [17, 18] if, besides being a representative
of a Dirac-Hestenes spinor field, it satisfies ysy = =y, where

Y21 =Y2¥1. (2.33)
The positive (negative) “eigenstates” of ys will be denoted by ¢/, (y_). For a
general g € sec%l*(M,g), we can write

Y =SWFysPyal (2.34)

1
2
Then

Y=y,+y._. (2.35)

The parity operator P in our formalism is represented in such a way that for
Y €secelt(M,g),

Py = —YoWYo. (2.36)

The following Dirac-Hestenes spinor fields are eigenstates of the parity op-
erator with eigenvalues +1:

Py' =+y', @' =yow_yo-u-,

, . , (2.37)
Py' =-y', ¢ =yo@+yo+y..

2.4. The spin-Dirac operator. Associated with the covariant derivative op-
erator D,, (see (2.13)) acting on sections of the Clifford bundle, there is a spin-
covariant derivative operator D;_acting on sections of a right spin-Clifford
bundle such that they are Dirac-Hestenes spinor fields. Hopefully, it will not
be necessary to present the details concerning this concept here (see [22]). It is
enough to say that D has a representative on the Clifford bundle, called Déi),

such that if @z is a representative of a Dirac-Hestenes spinor field, we have

1
DY wz = ea(ws) + 5 wais, (2.38)
where w, has been defined by (2.14). The representative of the spin-Dirac op-
erator acting on representatives of Dirac-Hestenes spinor fields is the invariant
first-order operator given by

0¥ =yaD). (2.39)

From the definition of the spin Dirac operator, we see that if we restrict
our considerations to orthonormal coordinate basis {y# = dx*}, where {x"}
are global Lorentz coordinates, then w, = 0 and the action of 2" on Dirac-
Hestenes spinor fields is the same as the action of @ on these fields.
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2.5. Maxwell and Dirac-Hestenes equations. With the mathematical tools
presented above, we have the Maxwell equation

oF = J, (2.40)

satisfied by an electromagnetic field F € sec /\Z(M) c sec¢l(M,g), and gener-
ated by a current J, € sec /\l(M) csec®l(M,g).

The Dirac-Hestenes equation in a spin frame E satisfied by a Dirac-Hestenes
spinor field € sec[A®(M) + A\2(M) + A*(M)] C sec6f(M, g) is

1
3Wy2y1—mw°+§y“wway2yl =0. (2.41)

For what follows, we restrict our considerations only to the case of orthonor-
mal coordinate basis, in which case the Dirac-Hestenes equation reads

ouy’y' —myy® =0. (2.42)

3. Solution of Yy, = F. We now want to solve (1.1) for . Before pro-
ceeding, we observe that on Euclidean spacetime this equation has been solved
using Clifford algebra methods in [15]. Also, on Minkowski spacetime, a par-
ticular solution of an equivalent equation (written in terms of biquaternions)
appears in [7]. We are going to show that, contrary to the claims of [14], a gen-
eral solution for ¢ has indeed eight degrees of freedom, although two of them
are arbitrary, that is, not fixed by F alone. Once we give a solution of (1.1)
for , the reason for the indetermination of two of the degrees of freedom
will become clear. This involves the Fierz identities, boomerangs [17, 27, 30],
and the general theorem permitting the reconstruction of spinors from their
bilinear covariants.

We start by observing that from (1.1) and (2.26), we can write

F = pePsRy, R. (3.1)
Then, defining f = F/pef¥s, it follows that

f=RyxR, (3.2)
fP=-1. (3.3)

Now, since all objects in (3.1) and (3.2) are even, we can take the advantage
of the isomorphism 63, = ¢£{ ; and make the calculations when convenient
in the Pauli algebra. To this end, we first write

0 -E' -E* -E3
E'' 0 -B3 B2
E2 B¥ 0 -B'|’
F3 —-B?2 B! 0

F=SFMy,y, FW= (3.4)
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where (E',E2 E3) and (B!, B?,B3) are, respectively, the Cartesian components
of the electric and magnetic fields.

We now write F in €£*(M, g), the even subalgebra of ¢£(M,g). The typical
fiber of ¢¢*(M,g) (which is also a vector bundle) is isomorphic to the Pauli
algebra. We put

0i=Yiyo, 1=010203=Yoy1y2¥3=Ys. (3.5)

Recall that i commutes with bivectors and, since i?2 = —1, it acts like the

imaginary unit i = v/—1in €£* (M, g). From (3.4) and (3.5) (taking into account
our previous discussion), we can write

F =E+iB, (3.6)

with E = E'Gy, B = B/d, i,j = 1,2,3. We can write an analogous equation for

f:
f=eé+ib. (3.7)
Now, since F? = 0 and
F>=F-F+FAF =—(E>-B?) +2i(E-B), (3.8)

the above equations give (in the more general case where both I, = (E2—B2) =0
and I, = (E-B) # 0)

RN 1 2(E - B)
p= 7c0s[arctg23]’ B= > arctan ( B ) (3.9)
Also,
é:%[(ECOSB+EsmB)], E:%[(ECOSB—ESH’IB)]. (3.10)

3.1. A particular solution. Now, we can verify that
_ o ya+f G —-if
V2(-ysD)  iy2(1-i(f-63)) (3.11)
1= fO—ysf1?= f- a3,

is a Lorentz transformation, that is, LL = LL = 1. Moreover, L is a particular
solution of (3.2). Indeed,

yor+f yie—f _ f20-ysD] (3.12)

J2(1-ys3) y21\/2(1—y51) 2(1-ysi)
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Of course, since f2 =—1,62=Db2-1, and é- b = 0, there are only four real

degrees of freedom in the Lorentz transformation L. From this result in [14],
it is concluded that the solution of (1.1) is the Dirac-Hestenes spinor field

¢ = /persPL, (3.13)

which has only six degrees of freedom and thus is not equivalent to a general
Dirac-Hestenes spinor field (the spinor field that must appear in the Dirac-
Hestenes equation), which has eight degrees of freedom. In this way, it is stated
in [14] that the MDE of first kind proposed in [35, 39] cannot hold. Although
it is true that (3.13) is a solution of (1.1), it is not a general solution, but only
a particular one.

Before leaving this section, we mention that there are many other Dirac-like
forms of the Maxwell equations published in the literature. All are trivially
related in a very simple way and in principle have nothing to do with the two
kinds of MDE discussed in the present paper, see [27].

3.2. The general solution. The general solution R of (1.1) is trivially found.
Itis

R=1LS, (3.14)

where L is the particular solution just found and S is any member of the sta-
bility group of y,i, that is,

Sysn1S=y», $§=8S=1. (3.15)

It is trivial to find that we can parametrize the elements of the stability group
as

S =exp (Yozv)exp (y219), (3.16)

with 0 < v < o0 and 0 < @ < oo. This shows that the most general Dirac-
Hestenes spinor field that solves (1.1) has indeed eight degrees of freedom
(as it must be the case, if the claims of [35, 39] are to make sense), although
two degrees of freedom are arbitrary, that is, they are like hidden variables!

Now, the reason for the indetermination of two degrees of freedom has to
do with a fundamental mathematical result: the fact that a spinor can only be
reconstructed through the knowledge of its bilinear covariants and the Fierz
identities. Explicitly, to reconstruct a Dirac-Hestenes spinor field , it is nec-
essary to know also, besides the bilinear covariant given by (1.1), the following
bilinear covariants:

J=wyoP, K=yys. (3.17)
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Now, J, K, and F are related through the so-called Fierz identities:

JZ — _KZ — _O.Z_wz
J-K=0, JAK=—(w+ys)F, (3.18)
o =pcosp, w = psinp.

In the most general case, when both o and w are not 0, we also have the
notable identities first found by Crawford [7] (and which can be derived almost
trivially using the Clifford bundle formalism):

F.J = wk, F.K=w],
(ysF).J = 0K, (ysF) K=0],
F-F=w?-0? (ysF)-F =20 w, (3.19)
JF=—(w+ys0)K, KF=—(w+ys0)],
F?=w?-0%-2ys0w, F'=KFK/(w?+0?).

Once we know w, o, J, K, and F, we can recover the Dirac-Hestenes spinor

field as follows. First, introduce a boomerang [17, 18, 30] Z € 6L (M, g) given
by

Z=0+]J+iF—iKw. (3.20)

Then, we can construct ¥ = Z f € €l (M, g) f which has the following matrix
representation (once the standard representation of the Dirac gamma matrices
are used):

w1 0 0 0

. 00 0

\11:52000 (3.21)
ws 0 0 O

Now, it can easily be verified that ¥ = Zf determines the same bilinear
covariants as the ones determined by . Note, however, that this spinor is not
unique. In fact, Z determines a class of elements Zn, where n is an arbitrary
element of ¢fc (M, g) f which differs one from the other by a complex phase
factor [17, 18, 30].

Recalling that a representative of a Dirac-Hestenes spinor field determines
a unique element of ® € ¢{ (M) f by ® = ¢ f, then it follows (from (3.21) and
(2.27) that gives the matrix representation of ) that we can trivially recon-
struct an  that solves our problem.

4. The generalized Maxwell equation. To comment on the basic error in
[14] concerning the Clifford bundle formulation of the generalized Maxwell
equation, we recall the following.
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The generalized Maxwell equation [19, 27] which describes the electromag-
netic field generated by charges and monopoles can be written in the Cartan
bundle as

dF = Ky, ac =K., (4.1)

where F,G € /\Z(M) and K,,,, K, € /\3(M).

These equations are independent of any metric structure defined on the
world manifold. When a metric is given and the Hodge dual operator * is
introduced, it is supposed that in vacuum we have G = * F. In this case, putting
K, =—xJ, and K,, = * Ji, with J,, J;n € sec /\1 (M), we can write the following
equivalent set of equations:

dAF = — x [, d*F=—x]J,, (4.2)
O(*F) = Jm, OF = —Jo, 4.3)
O(xF) = Jm, OF = —J,, (4.4)

AF = — * i, OF = —J,. (4.5)

Now, supposing that any sec /\j(M) csecl(M,g) (j =0,1,2,3,4) and taking
into account (2.12), (2.13), (2.14), (2.15), and (2.16), we get (1.2) by summing
the two equations in (4.5), that is,

(d=0)F =Jo+Km or (d—8)*F =—Jm +Ko, (4.6)
or equivalently

OF = Jo+ysJm or 9(—ysF)=—Jm+ysle. 4.7)

Now, writing with the conventions of Section 2,

1
F= EFUVJ/HYW *F = (*FUV)Y;JYV: (4.8)

N | —

then generalized Maxwell equations in the form given by (4.3) can be written
in components (in a Lorentz coordinate chart) as

o, F* = J¥, 0y (*F*V) = —Jh. 4.9)

Now, assuming as in (1.1) that F = @ y,; ¢ and taking into account the relation
between ¢ and the representation of the standard Dirac spinor ¥p given by
(2.28), we can write (4.9) as

au\PD[)A/uv)A’v]\IID = 2.]5; 5;1‘1'17375[?“,37\/]‘1’[; = *2151,

1. .. . . 1o . .
FIY = S¥p[9, W]Y,  CF") = S W35 (9w v Y.

(4.10)
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The reverse of the first equation of (4.7) reads
(0F) = Jo — K. (4.11)

First summing, and then subtracting (1.2) from (4.1) we get the following
equations for F = @y :

— e~

oYyn P+ (Owyay) =2, oYyn Y — (0wy21) = 2Ky, (4.12)

which is equivalent to (2.12) in [14] (where % is used for the three form of
monopolar current). There, it is observed that J, is even under reversion and
Ky, is odd. Then, it is claimed that “since reversion is a purely algebraic oper-
ation without any particular physical meaning, the monopolar current K,, is
necessarily zero if the Clifford formalism is assumed to provide a representa-
tion of Maxwell’s equations where the source currents J, and K;, correspond
to fundamental physical fields.” It is also stated that (4.10) and (4.12) impose
different constrains on the monopolar currents J, and K,.

Itis clear that these arguments are fallacious. Indeed, it is obvious that if any
comparison is to be made, it must be between J, and J,,, or between K, and K.
In this case, it is obvious that both pairs of currents have the same behavior
under reversion. This kind of confusion is widespread in the literature, mainly
by people that work with the generalized Maxwell equation(s) in component
form (4.9).

It seems that experimentally J,, = 0 and the following question suggests
itself: is there any real physical field governed by an equation of the type of
the generalized Maxwell equation (1.2)? The answer is yes.

5. The generalized Hertz potential equation. In what follows, we accept
that J,, = 0 and take Maxwell equations for the electromagnetic field F €
secA\>(M) C sec6f(M,g) and a current J, € sec\' (M) C sec6l(M,g) as

oF = J.. (5.1)

Let IT = (1/2)II*Vy, Yy, = I, +ill,y € sec\*(M) C sec¢f(M,g) be the so-
called Hertz potential [34, 37]. We write

o -m  -m -
mooo -m, I
moom, o0 I,
m o-m, 1m, o

(] = (5.2)

and define the electromagnetic potential by

A= Sl esecA (T*M) c sec¢l(M,g). (5.3)
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Since &2 = 0, it is clear that A satisfies the Lorenz gauge condition, that is,
60A=0. (5.4)
Also, let
y’S =dIl € sec \3(M) c sec6l(M,g), (5.5)
and call S the Stratton potential. It follows also that
d(y®S) =d’I1=0. (5.6)
But d(y°S) = y>8S, from which we get, taking into account (4.10),
0S5 =0. (5.7)

We can put (5.3) and (5.5) in the form of a single generalized Maxwell-like
equation, that is,

Ol = (d-8)IT=A+y>S =l (5.8)

Equation (5.8) is the equation we were looking for. It is a legitimate physical
equation. We also have

Ol = (d—6)%I1 = dA + ysdS. (5.9)
Next, we define the electromagnetic field by
F=0d4=0ll=dA+ysdS = Fo+ ysFn. (5.10)
We observe that
Ol =0= F, = —ysFp. (5.11)
Now, we calculate 0F. We have
0F = (d—8)F =d*A+d(y°dS) —6(dA) —6(y>dSs). (5.12)

The first and last terms in the second right member of (5.9) are obviously null.
Writing

Je=-06dA,  y*J, =-d(y°ds), (5.13)
we get Maxwell equation
0F=(d-98)F=], (5.14)
if and only if the magnetic current y°J,, = 0, that is,

6dS =0, (5.15)
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a condition that we suppose to be satisfied in what follows. Then,

0OA = J, = —0dA, oS =0. (5.16)
Now, we define
Fo=dA=E,+iB,,  Fpu =dS =By +iEm, (5.17)
and also
F=Fo+ysFm =E+iB = (E,—E) +i(B. + Bm). (5.18)
Then, we get
ori, = E, all,, = B. (5.19)

It is important to keep in mind that
oll=0=E=0, B=0. (5.20)

Nevertheless, despite this result, we have the following theorem.

HERTZ THEOREM. The Hertz potential satisfies
Ol =0 = 0F, = 0. (5.21)
PROOF. Immediately from the above equations, we have that

OF, = —0(ysFm) = —d(ysdS) + 6 (ysdS) = ysd>S — y;6dS = 0. (5.22)

O

We remark that (5.21) has been called the Hertz theorem in [32, 37] and it has

been used there and also in [8, 9, 10, 16, 20, 31, 33] in order to find nontrivial
superluminal solutions of the free Maxwell equation.

6. Maxwell Dirac equivalence of first kind. We consider a generalized Max-
well equation

oF = 9, (6.1)

where 0 = y#0, is the Dirac operator and ¢ is the electromagnetic current
(an electric current J, plus a magnetic monopole current —ysJ,,, where J,,
Jm € sec /\lM C %f(M,g)). We proved in Section 2 that if F2 = 0, then we can
write

F=yyny, (6.2)
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where @ € sec¢l" (M, g) is a representative of a Dirac-Hestenes field. If we use
(6.2) in (6.1), we get

O(Wy219) = Yy o (Wy21) = y* (Ouwya1 @ + Yy210,0) = $, (6.3)
from where it follows that
2y"(Quwy1 ), = 9. (6.4)
Consider the identity
YHOuwy1 ), = 0wy —yH(0uwya ) o — Y  (0uwy190) 4, (6.5)
and define, moreover, the vectors
J=yH0upya1d)o, g =y {(0uWysyad)o. (6.6)
Taking into account (6.3), (6.4), (6.5), and (6.6), we can rewrite (6.3) as
oYyny = [%§+(J'+Ysg)]- (6.7)

Equation (6.7) is a spinorial representation of Maxwell equation. In the case
where  is nonsingular (which corresponds to nonnull electromagnetic fields),
we have

e}'Sﬁ

1 .
oYy = [§§+(J+Ysg)]¢’- (6.8)

Equation (6.8) representing Maxwell equation, written in that form, does not
appear to have any relationship with the Dirac-Hestenes equation (2.42). How-
ever, we will make some algebraic modifications on it in such a way as to put it
in a form that suggests a very interesting and intriguing relationship between
them, and consequently a possible connection between electromagnetism and
quantum mechanics.

Since y is supposed to be nonsingular (F # 0), we can use the canonical de-
composition of ¢ and write @ = pefrs/2R, with p, B € sec \° M C sec¢l(M,g)
and R € Spin, (1,3), for all x € M. Then

(Oulnp +ys0,B+Qu) W, (6.9)

N | =

oy =
where we define the 2-form
Qu =2(3,R)R. (6.10)

Using this expression for d,y into the definitions of the vectors j and g
(6.6), we obtain that
J =y (Qu-S)pcosB+yu[Qu- (y55)]psing,

. (6.11)
9=1Qu-(ysS)]pcosB—yu(Qu-S)psinp,
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where we define the spin 2-form S by
1 1 .
S§= EWYle = ER)/21R- (6.12)
We now define
J=wyoW =pv=pRy°R", (6.13)

where v is the velocity field of the system. To continue, we define the 2-form
Q =v#Q, and the scalars A and K by

A=Q-S, K=0Q-(ysS). (6.14)
Using these definition, we have that
Qu-S=Avy,  Qu-(ysS) = Kuy, (6.15)
and the vectors j and g can be written as

j=AvpcosB+Kvpsinf =Apv,

g=KvpcosB—Avpsinp = kpv, (6.16)
where we defined
A =AcosB+Ksinp, Kk = Kcosf—Asinp. (6.17)
The spinorial representation of Maxwell equation is written now as
eVsB
oYy = Z}‘I/+7\W}’o+}/siﬂll)’o- (6.18)

Observe that there are [8, 9, 10, 20, 31, 32, 33, 34, 37] infinite families of
nontrivial solutions of Maxwell equations such that F? # 0 (which correspond
to subluminal and superluminal solutions of Maxwell equation). Then, it is licit
to consider the case § = 0. We have

oYy21 = APyo +ysKkyyo, (6.19)

which is very similar to the Dirac-Hestenes equation.

In order to go a step further into the relationship between those equations,
we remember that the electromagnetic field has six degrees of freedom while a
Dirac-Hestenes spinor field has eight degrees of freedom, and that we proved
in Section 2 that two of these degrees of freedom are hidden variables. We are
free therefore to impose two constraints on  if it is to represent an electro-
magnetic field. We choose these two constraints as

9-j=0, d-g=0. (6.20)
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Using (6.16), these two constraints become
0-j=pA+Ad-J=0, d-g=pk+kd-J=0, (6.21)

where J = pv, A = (v-9)A, and k = (v - 8)k. These conditions imply that

kKA =Ak (A=+0), (6.22)
which gives
K
A const. = —tan f3o, (6.23)
or, from (6.17),
K
K :tan(,B—Bo). (624)

Now we observe that B is the angle of the duality rotation from F to F' =
eYVsPF. If we perform another duality rotation by Sy, we have F — e¥s(B+Bo)F,
and, for the Takabayasi angle, § — B+ Bo. If we work therefore with an electro-
magnetic field duality rotated by an additional angle B, the above relationship
becomes

K
A= tan 3. (6.25)

This is, of course, just a way to say that we can choose the constant ¢ in (6.23)
to be zero. Now, this expression gives

A
A=AcosB+Atanfsinff = —;,
cos B (6.26)
Kk =AtanfcosB—Asinf =0,

and the spinorial representation of the Maxwell equation (6.19) becomes
dWy21—AYyo = 0. (6.27)
Note that A is such that
pA=-20-J. (6.28)

The current J = ¢y, is not conserved unless A is constant. If we suppose
also that

0-J=0, (6.29)
we must have

A = const. (6.30)
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Now, throughout these calculations, we have assumed that h = ¢ = 1. We
observe that, in (6.27), A has the units of (length)~!, and if we introduce the
constants 71 and ¢, we have to introduce another constant with a unit of mass.
If we denote this constant by m such that

_mc

A n

(6.31)
then (6.27) assumes a form which is identical to Dirac-Hestenes equation:
mc
OWyz1— =~ Wyo =0. (6.32)

It is true that we did not prove that (6.32) is really Dirac equation since
the constant m has to be identified in this case with the electron’s mass, and
we do not have any good physical argument to make that identification, until
now. In resume, (6.32) has been obtained from Maxwell equation by imposing
some gauge conditions allowed by the hidden parameters in the solution of
(1.1) for y in terms of F. In view of that, it seems more appropriate instead of
using the term mathematical MDE of first kind to talk about a correspondence
between those equations under which the two extra degrees of freedom of the
Dirac-Hestenes spinor field are treated as hidden variables.

To end this section we observe that it is too early to know if the above results
are of some physical value or only a mathematical curiosity.

7. Maxwell-Dirac equivalence of second kind. We now look for a Hertz
potential field IT € sec /\2 (M) satisfying the following (nonlinear) equation:

oIl = (3‘5+m19)/3 +m(l'[y012)1) +Y5(319+m<5}’3 ~Ys (mHYOlz)g), (7.1)

where 6,10 € sec \’(M) and m is a constant. According to Section 5, the elec-
tromagnetic and Stratton potentials are

A=06+mPys+m(Iyo2);,

(7.2)
YsS =Ys (319+ mbys —ys (mn)/ou)g),
and must satisfy the following subsidiary conditions:
0(86+mPys +m(Myo2),) = J,
D()’S(m@+m‘5}/3*3’5(7’”1_[)/012)3)) =0, -3

06 +mao - (Hy012>1 =0,

0} —-mao - ()’5 (HY012>3> =0.
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Now, in the Clifford bundle formalism, as we have already explained above,
the following sum is a legitimate operation:

Y =-6+I1+ys), (7.4)

and, according to the results of Section 2, defines y as a representative of some
Dirac-Hestenes spinor field. Now, we can verify that y satisfies the equation

oYy —myyo =0 (7.5)

which is, as we already know, a representative of the standard Dirac equation
(for a free electron) in the Clifford bundle, which is a Dirac-Hestenes equation
(2.42), written in an orthonormal coordinate spin frame.

The above developments suggest (consistently with the spirit of the gener-
alized Hertz potential theory developed in Section 5) the following interpreta-
tion. The Hertz potential field IT generates the real electromagnetic field of the
electron. (The question of the physical dimensions of the Dirac-Hestenes and
Maxwell fields is discussed in [35].) Moreover, the above developments suggest
that the electron is composed of two fundamental currents, one of electric type
and the other of magnetic type circulating at the ultra microscopic level, which
generate the observed electric charge and magnetic moment of the electron.
Then, it may be the case, as speculated by Maris [21], that the electromagnetic
field of the electron can be split into two parts, each corresponding to a new
kind of subelectron-type particle, the electrino. Of course, the above develop-
ments leave open the possibility to generate electrinos of fractional charges.
We still study more properties of the above system in another paper.

8. Seiberg-Witten equations. Asitis well known, the original Seiberg-Witten
(monopole) equations have been written in Euclidean spacetime and for the
self-dual part of the field F. However, on Minkowski spacetime, of course, there
are no self-dual electromagnetic fields. Indeed, (2.11) implies that the unique
solution (on Minkowski spacetime) of the equation xF = F is F = 0. This is
the main reason for the difficulties in interpreting that equations in this case,
and, indeed, in [38], an interpretation of that equations was attempted only for
the case of Euclidean manifolds. Here we want to derive and give a possible
interpretation to those equations based on a reasonable assumption.

Now, the analogous of Seiberg-Witten monopole equations reads in the Clif-
ford bundle formalism and on Minkowski spacetime as

1 -
oYy —Ap=0, F= SWyay,  F= dA, (8.1)
where @ € sec¢f*(M,g) is a Dirac-Hestenes spinor field, A € sec/\l(M) -

sec¢l(M,g) is an electromagnetic vector potential, and F € sec/\z(M) -
sec6l(M,g) is an electromagnetic field.
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Our intention in this section is

(a) to use the MDE of the first kind (proved in Section 6) and an additional
hypothesis to be discussed below to derive the Seiberg-Witten equations
on Minkowski spacetime;

(b) to give a (possible) physical interpretation for those equations.

8.1. Derivation of Seiberg-Witten equations

STEP 1. We assume that the electromagnetic field F appearing in the second
of the Seiberg-Witten equations satisfies the free Maxwell equation, that is,
OF = 0.

STEP 2. We use the MDE of the first kind proved in Section 6 to obtain (6.27).
STEP 3. We introduce the ansatz
A=Ayyoy . (8.2)

This means that the electromagnetic potential (in our geometrical units) is
identified with a multiply of the velocity field defined through (6.13). Under
this condition, (6.27) becomes

oYy — Ay =0, (8.3)

which is the first Seiberg-Witten equation!

8.2. A possible interpretation of the Seiberg-Witten equations. It is time
to find an interpretation for (8.3). In order to do that, we recall from Section 2.5
that if . are Weyl spinor fields (as defined through (2.33)), then .. satisfy a
Weyl equation, that is,

oy, =0. (8.4)

Now consider the equation for ¢, coupled with an electromagnetic field
A=gBesec\' (M) c sec¢l(M,g), that is,

oY,y +gBy, =0. (8.5)
This equation is invariant under the gauge transformations
Yy — Yoedvst, B— B+06. (8.6)

Also, the equation for _ coupled with an electromagnetic field gB
sec\'(M) is

oY _yn+gBy_ =0, (8.7)
which is invariant under the gauge transformations

Yo — w_edrst: B B+00, (8.8)



THE RELATION BETWEEN MAXWELL, DIRAC ... 2731

showing clearly that the fields . and g _ carry opposite “charges.” Now con-
sider the Dirac-Hestenes spinor fields y', @' given by (2.37) which are eigen-
vectors of the parity operator and look for solutions of (8.3) such that ¢ = y'.
We have

oYy, +gBy' =0 (8.9)
which separates into two equations:

dWlyn +gysBywl =0, dyly,n+gysBy! =0. (8.10)

These results show that when a Dirac-Hestenes spinor field associated with
the first of the Seiberg-Witten equations is in an eigenstate of the parity oper-
ator, that spinor field describes a pair of particles with opposite charges. We
interpret these particles (following Lochak [16] who suggested that an equa-
tion equivalent to (8.10) describes massless monopoles of opposite charges)
as being massless monopoles in auto-interaction. Observe that our proposed
interaction is also consistent with the third of Seiberg-Witten equations, for
F = dA implying a null magnetic current.

It is now well known that Seiberg-Witten equations have nontrivial solutions
on Minkowski manifolds (see [23]). From the above results, in particular, taking
into account the inversion formula (3.12), it seems to be possible to find a
whole family of solutions for the Seiberg-Witten equations, which has been
here derived from an MDE of first kind (proved in Section 6) with the additional
hypothesis that electromagnetic potential A is parallel to the velocity field v
(8.2) of the system described by (6.13). We conclude that a consistent set of
Seiberg-Witten equations on Minkowski spacetime must be

oYy —AyY =0,
F= %W}/Zl'jj, F=dA, (8.11)
A=Apyoyp .

9. Conclusions. In this paper, we exhibited two different kinds of possible
MDE. Although many will find the ideas presented above speculative from the
physical point of view, we hope that they may become important, at least from
a mathematical point of view. Indeed, not so long ago, researching solutions of
the free Maxwell equation (0F = 0) satisfying the constraint F2 # 0 (a necessary
condition for derivation of an MDE of the first kind) conduced to the discovery
of families of superluminal solutions of Maxwell equations and also of all the
main linear relativistic equations of theoretical Physics [16, 34]. The study of
the MDE of the second kind reveals an unsuspected interpretation of the Dirac
equation, namely, that the electron seems to be a composed system built up
from the self interaction of two currents of “electrical” and “magnetic” types.
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Of course it is too early to say if this discovery has any physical significance.
We also showed that by using the MDE of the first kind together with a reason-
able hypothesis, we can shed light on the meaning of Seiberg-Witten monopole
equations on Minkowski spacetime. We hope that the results just found may
be an indication that Seiberg-Witten equations (which are a fundamental key in
the study of the topology of four manifolds equipped with an Euclidean metric
tensor) may play an important role in Physics, whose arena, where phenomena
occur, is a Lorentzian manifold.
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