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The Fresnel cosine integral C (x), the Fresnel sine integral S(x), and the associated
functions C+(x), C-(x), S+(x), and S_(x) are defined as locally summable func-
tions on the real line. Some convolutions and neutrix convolutions of the Fresnel
cosine integral and its associated functions with x% and x" are evaluated.
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The Fresnel cosine integral C(x) is defined by

2 (~ >
C(x) = _ﬂ,[ cosu-du,
0

(see [3]) and the associated functions C, (x) and C_(x) are defined by

Ci(x)=H(x)C(x),

C_(x)=H(-x)C(x).

The Fresnel sine integral S(x) is defined by

2 pe
S(x) = —J sinu?du,
T Jo

(see [3]) and the associated functions S, (x) and S_(x) are defined by

S_(x) =H(-x)S(x),

where H denotes Heaviside’s function.

We define the function I,-(x) by
X

oo = |

0

forr =0,1,2,.... In particular,

In(x) = ,/%C(x), I (x) = %sinxz, L(x) = %xsinxz—

We define the functions cos. x, cos_ x, sin; x, and sin_ x by

cos; x = H(x)cosx,

sin, x = H(x) sinx,

u’ cosu’du

cos_x = H(—x)cosx,

sin_x = H(—x)sinx.

JTT

232

S(x).
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If the classical convolution f * g of two functions f and g exists, then g x f
exists and

frxg=g*f. (8)

Further, if (f*g) and fx g’ (or f’ * g) exist, then

(fxg) =f*xg (or f *xg). 9)

The classical definition of the convolution can be extended to define the con-
volution f * g of two distributions f and g in 9’ with the following definition,
see [2].

DEFINITION 1. Let f and g be distributions in %’. Then the convolution
f *x g is defined by the equation

((f*xg)(x),@(x)) = (f(),(gx),p(x+¥))) (10)

for arbitrary @ in @', provided that f and g satisfy either of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.
It follows that if the convolution f * g exists by this definition, then (6) and
(8) are satisfied.

THEOREM 2. The convolution (cos, x?) * x. exists and

v

(cosy x2) #xxT = (:) (=), (x)xt (11)

i=0

forv =0,1,2,.... In particular,

(cosy x?) *xH(x) = \/7C+(x),

(12)
(cosy x )*x+——251n+x +\/>C(x)x+.

PROOF. It is obvious that (cos, x?) * x% = 0 if x < 0. When x > 0, we have

X
(cos. x?) *x7, :J cost?(x—t)"dt

Z( )f xi(=t) Tcost?dt 13)
Z( )( D), (x)x,

proving (11). Equations (12) follow on using (6). ]
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COROLLARY 3. The convolution (cos_ x2) % x” exists and
v r )
(cos_x?) s x" =-> (i)ly_i(x)xl (14)
i=0

forvr=0,1,2,.... In particular,

(cos_x?) *H(-x) = —\/§C7 (x),

(cos_x?)*x_ = —%sin.x2 —JgS(x)x_.

15)

PROOF. Equations (14) and (15) follow on replacing x by —x in (11) and
(12), respectively, and noting that

L (=x) = (=1)" "', (x). (16)
O

THEOREM 4. The convolution C,(x) * x¥ exists and

V2 ' E v+t » -
vr_ __¥v= _1\r—i+l ) i
Colx)#xl = == 2y ZO o) EDT T i Goxt (17)
forvr=0,1,2,.... In particular,
C.(x)*xH(x) = 1 sin, x2+C(x)x
+ = T T A/ + +3
1 ZIT 1 1 (18)
Co(x)%kx, = Wi sinx?x., — o sin, x?%— ZS+(x) + iC(x)xﬁ.

PROOEF. It is obvious that C. (x)*xx" =0 if x < 0. When x > 0, we have
T X t
JEQ(X)*XK :J (xft)yj cosu’dudt
0 0

X P
=J COSMZJ (x—-t)'dtdu
0 u

1 x 2 r+1

= mjo cosu-(x—u)"'du (19)
x r+1
- LJ cosu® > <Tf1>x"(u)r”1du
r+1Jo o\

1 T r+1 . .

=1 i (=) (o) xk.
i=0

Equation (17) follows. Equations (18) follow on using (6). ]
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COROLLARY 5. The convolution C_(x) * x" exists and

V2 " (r+1 -
r o _ ) 1
C_(x)*x" = D FZO oI G0xt (20)
forvr=0,1,2,.... In particular,
C_(x)*xH(-x) = \/% sin_ x2+C(x)x_,
1 1 1 1 (21)
_ _ a2 L 2_ 1 1 2
C_(x)*x_= stmx X_+ msm,x 4S,(x) + 2C(x)x,
PROOF. Equations (20) and (21) follow on replacing x by —x in (17) and
(18), respectively, and using (16). O

Definition 1 was extended in [1] with the next definition but first of all we
let T be a function in % having the following properties:
1) T(x)=71(-x),
) 0=s1(x) =<1,
(iii) T(x) =1, for |x| <1/2,
@iv) T(x) =0, for |x| = 1.
The function T, is now defined for v > 0 by

1, x| <v,
Ty(X)=3T(VWx—-v't), x>v, (22)

T(VWx+vV*th), x < —v.

DEFINITION 6. Let f and g be distributions in %’ and let f, = fT, for
v > 0. The neutrix convolution product f & g is defined as the neutrix limit of
the sequence {f, * g}, provided that the limit h exists in the sense that

N}-Jgn(fv xg,@) = (h,Q), (23)

for all @ in 9%, where N is the neutrix, see van der Corput [5], with its domain
N’ the positive real numbers, with negligible functions finite linear sums of
the functions

vAn" 'y, In"v, v'sinv?, v'cosv: (A+0,r=1,2,...) (24)
and all functions which converge to zero in the normal sense as v tends to
infinity.

Note that in this definition the convolution product f, * g is defined in
Gel'fand and Shilov’s sense, since the distribution f;, has bounded support.

It was proved in [1] that if f * g exists in the classical sense or by Definition 1,
then f ® g exists and

f®g=rf*g. (25)
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The following theorem was also proved in [1].

THEOREM 7. Let f and g be distributions in 9’ and suppose that the neutrix
convolution product f ® g exists. Then the neutrix convolution product f ® g’
exists and

(f®9)' =f®7g" (26)
We need the following lemma.
LEMMA 8. IfI, = N-lim,_« I, (Vv), then
I, CDEnT
24r+1(27)!\/§

Iy 41 =0,

[ EDTErs by (27)
4r+2 = 24r+2(21,)!\/§ s

(—1)7+1(2r)!
Layi3 = 5

forr=0,1,2,....

PROOF. It is easily proved that

Lo 11 2
I3(x)—2x sinx 2+2cosx (28)

and it follows from (6) and (28) that (27) hold when 7 = 0, since
1
S(OO):C(OO):§, (29)
see Olver [4].

We also have

“3cosx? thﬂxh

2r 2r

1 . 2r—1
Izy(x)=§x 1smx2+Tx

(30)
1 . )
Iy (x) = zx” sinx? + gxzr‘z cosx? —r(r —1)Ioy_3(x)

and it follows that

. 2r)l(r—2)! .
]\(}-_!gnIZV(V) = T 2ir— 4 N/—Jgn[zy,4(v),

(31)

]\{’—limlzyﬂ(v) = — N-hmlzy_g(v).

(r—=2)! v-

Equations (27) now follow by induction. ]
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THEOREM 9. The neutrix convolution (cos, x?2) x x" exists and
" v . .
(cos, x2)@x" =D (1) (=), _ixt (32)
i=0

forv =0,1,2,.... In particular,

s

2.2’
ALY
2277

PROOF. We put (cos,;x?), = (cos,;x?)T,(x). Then the convolution
(cosy x?), * x" exists and

B

(cos, x*)®1 =
(33)

ﬁ

(cosy x*)®x =

v v+vTY
(cos; x?), xx" =J COStZ(X*t)th‘FJ T, (t)cost?(x —t)"dt. (34)

0 v O
Now,
v v r Vo .
J cost?(x—t)"dt = > (1) J x'(~t)""cost?dt
0 - 0
1;0 (35)
I . .
= z <,)(1)rllr—i(v)xl
‘ i
i=0
and it follows that
v " (r . .
]\{/—hm cost?(x—t)"dt = > (1) (=) ", _ixt (36)
T Jo i=0
Further, it is easily seen that, for each fixed x,
v+y Y
lim T, (t)cost?(x—t)"dt =0 (37)
el I

and (32) follows from (34), (36), and (37). Equations (33) follow immediately.
COROLLARY 10. The neutrix convolution cos_ x> & x" exists and

r

(cos_x?)@®x" =D (1;) (=), Xt (38)

i=0

forvr =0,1,2,.... In particular,

2yl = VT
(cos_x°)®1= 23" o)
(cos_x2)®x=fﬂx
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PROOF. Equation (38) follows on replacing x by —x in (32) and noting that
I, must be replaced by

N-limI, (-v) = (-1)"" lj\fv}lmlr(v) (1), (40)
Equations (33) follow. O

COROLLARY 11. The convolution (cosx?) ® x" exists and
(cosx?)®x" =0 (41)

forr=0,1,2,....

PROOF. Equation (41) follows from (32) and (38) on noting that cosx? =
oS, x2% 4+ cos_ x?2. O

THEOREM 12. The neutrix convolution C,(x) ® x" exists and

ro_ X r+1 r—i+l
Ci(x)®x Hl)g( )( 1) I X! (42)

forr =0,1,2,.... In particular

Ci(x)®1=0, (43)
Cix)®x = % (44)

PrROOF. We put [C.(x)]y = C.(x)Ty(x). Then the convolution product
[Ci(x)]y *xx" exists and

[Ci(x)], kx" —J C(t)(x—t)rdt+r " T, (£)C(t)(x —t)"dt. (45)

We have

EJ:C(t)(xft)ydt

v t
:J (x—t)VJ cosuldudt
0 0

v v
= J cosuZI (x—-t)"dtdu (46)
0 u

__i 2 _ r+1 _ _ r+1
== 0cosu [(x-V) (x—u)""]du

r+1 Z(TJrl) [(=v)"" = (—w)" "] cosu?du
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and it follows that

NV-_lgnchu)(x—tmt—ﬁf Z(”1)< DL Xt (47)

(r

Further, it is easily seen that, for each fixed x

v+yTV
&im T, (OCH)(x—t)"dt =0 (48)
ey 1§
and (42) now follows immediately from (45), (47), and (48). O

COROLLARY 13. The neutrix convolution C_(x) ® x" exists and

C-(0)@x" = r(,,+1)Z(””)( 1)Ly 49)

forv =0,1,2,.... In particular,

C_(x)®1=0, (50)

C,(x)®x:—é. (51)

PROOF. Equation (49) follows on replacing x by —x and I, by (-1)""I, in
(42). Equations (50) and (51) follow. O

COROLLARY 14. The neutrix convolution C(x) ® x" exists and
Cx)®x"=0 (52)

forr=0,1,2,....

PROOF. Equation (52) follows from (43) and (50) on noting that C(x) =
C.(x)+C_(x). O
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