

## ON THE FRESNEL INTEGRALS AND THE CONVOLUTION

ADEM KILIÇMAN and BRIAN FISHER

Received 24 November 2002

The Fresnel cosine integral  $C(x)$ , the Fresnel sine integral  $S(x)$ , and the associated functions  $C_+(x)$ ,  $C_-(x)$ ,  $S_+(x)$ , and  $S_-(x)$  are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel cosine integral and its associated functions with  $x_+^r$  and  $x^r$  are evaluated.

2000 Mathematics Subject Classification: 33B10, 46F10.

The *Fresnel cosine integral*  $C(x)$  is defined by

$$C(x) = \sqrt{\frac{2}{\pi}} \int_0^x \cos u^2 du, \quad (1)$$

(see [3]) and the associated functions  $C_+(x)$  and  $C_-(x)$  are defined by

$$C_+(x) = H(x)C(x), \quad C_-(x) = H(-x)C(x). \quad (2)$$

The *Fresnel sine integral*  $S(x)$  is defined by

$$S(x) = \sqrt{\frac{2}{\pi}} \int_0^x \sin u^2 du, \quad (3)$$

(see [3]) and the associated functions  $S_+(x)$  and  $S_-(x)$  are defined by

$$S_+(x) = H(x)S(x), \quad S_-(x) = H(-x)S(x), \quad (4)$$

where  $H$  denotes Heaviside's function.

We define the function  $I_r(x)$  by

$$I_r(x) = \int_0^x u^r \cos u^2 du \quad (5)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$I_0(x) = \sqrt{\frac{\pi}{2}} C(x), \quad I_1(x) = \frac{1}{2} \sin x^2, \quad I_2(x) = \frac{1}{2} x \sin x^2 - \frac{\sqrt{\pi}}{2\sqrt{2}} S(x). \quad (6)$$

We define the functions  $\cos_+ x$ ,  $\cos_- x$ ,  $\sin_+ x$ , and  $\sin_- x$  by

$$\begin{aligned} \cos_+ x &= H(x) \cos x, & \cos_- x &= H(-x) \cos x, \\ \sin_+ x &= H(x) \sin x, & \sin_- x &= H(-x) \sin x. \end{aligned} \quad (7)$$

If the classical convolution  $f * g$  of two functions  $f$  and  $g$  exists, then  $g * f$  exists and

$$f * g = g * f. \quad (8)$$

Further, if  $(f * g)'$  and  $f * g'$  (or  $f' * g$ ) exist, then

$$(f * g)' = f * g' \quad (\text{or } f' * g). \quad (9)$$

The classical definition of the convolution can be extended to define the convolution  $f * g$  of two distributions  $f$  and  $g$  in  $\mathcal{D}'$  with the following definition, see [2].

**DEFINITION 1.** Let  $f$  and  $g$  be distributions in  $\mathcal{D}'$ . Then the *convolution*  $f * g$  is defined by the equation

$$\langle (f * g)(x), \varphi(x) \rangle = \langle f(y), \langle g(x), \varphi(x+y) \rangle \rangle \quad (10)$$

for arbitrary  $\varphi$  in  $\mathcal{D}'$ , provided that  $f$  and  $g$  satisfy either of the conditions

- (a) either  $f$  or  $g$  has bounded support,
- (b) the supports of  $f$  and  $g$  are bounded on the same side.

It follows that if the convolution  $f * g$  exists by this definition, then (6) and (8) are satisfied.

**THEOREM 2.** *The convolution  $(\cos_+ x^2) * x_+^r$  exists and*

$$(\cos_+ x^2) * x_+^r = \sum_{i=0}^r \binom{r}{i} (-1)^{r-i} I_{r-i}(x) x_+^i \quad (11)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} (\cos_+ x^2) * H(x) &= \sqrt{\frac{\pi}{2}} C_+(x), \\ (\cos_+ x^2) * x_+ &= -\frac{1}{2} \sin_+ x^2 + \sqrt{\frac{\pi}{2}} C(x) x_+. \end{aligned} \quad (12)$$

**PROOF.** It is obvious that  $(\cos_+ x^2) * x_+^r = 0$  if  $x < 0$ . When  $x > 0$ , we have

$$\begin{aligned} (\cos_+ x^2) * x_+^r &= \int_0^x \cos t^2 (x-t)^r dt \\ &= \sum_{i=0}^r \binom{r}{i} \int_0^x x^i (-t)^{r-i} \cos t^2 dt \\ &= \sum_{i=0}^r \binom{r}{i} (-1)^{r-i} I_{r-i}(x) x^i, \end{aligned} \quad (13)$$

proving (11). Equations (12) follow on using (6). □

**COROLLARY 3.** *The convolution  $(\cos_- x_-^2) * x_-^r$  exists and*

$$(\cos_- x_-^2) * x_-^r = - \sum_{i=0}^r \binom{r}{i} I_{r-i}(x) x_-^i \quad (14)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} (\cos_- x_-^2) * H(-x) &= -\sqrt{\frac{\pi}{2}} C_-(x), \\ (\cos_- x_-^2) * x_- &= -\frac{1}{2} \sin_- x_-^2 - \sqrt{\frac{\pi}{2}} S(x) x_- . \end{aligned} \quad (15)$$

**PROOF.** Equations (14) and (15) follow on replacing  $x$  by  $-x$  in (11) and (12), respectively, and noting that

$$I_r(-x) = (-1)^{r+1} I_r(x). \quad (16)$$

□

**THEOREM 4.** *The convolution  $C_+(x) * x_+^r$  exists and*

$$C_+(x) * x_+^r = \frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r+1} \binom{r+1}{i} (-1)^{r-i+1} I_{r-i+1}(x) x_+^i \quad (17)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} C_+(x) * H(x) &= -\frac{1}{\sqrt{2\pi}} \sin_+ x^2 + C(x) x_+, \\ C_+(x) * x_+ &= \frac{1}{2\sqrt{2\pi}} \sin x^2 x_+ - \frac{1}{\sqrt{2\pi}} \sin_+ x^2 - \frac{1}{4} S_+(x) + \frac{1}{2} C(x) x_+^2. \end{aligned} \quad (18)$$

**PROOF.** It is obvious that  $C_+(x) * x_+^r = 0$  if  $x < 0$ . When  $x > 0$ , we have

$$\begin{aligned} \sqrt{\frac{\pi}{2}} C_+(x) * x_+^r &= \int_0^x (x-t)^r \int_0^t \cos u^2 du dt \\ &= \int_0^x \cos u^2 \int_u^x (x-t)^r dt du \\ &= \frac{1}{r+1} \int_0^x \cos u^2 (x-u)^{r+1} du \\ &= \frac{1}{r+1} \int_0^x \cos u^2 \sum_{i=0}^{r+1} \binom{r+1}{i} x^i (-u)^{r-i+1} du \\ &= \frac{1}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-1)^{r-i+1} I_{r-i+1}(x) x_+^i. \end{aligned} \quad (19)$$

Equation (17) follows. Equations (18) follow on using (6). □

**COROLLARY 5.** *The convolution  $C_-(x) * x_-^r$  exists and*

$$C_-(x) * x_-^r = \frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^{r+1} \binom{r+1}{i} I_{r-i+1}(x) x_-^i \quad (20)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} C_-(x) * H(-x) &= \frac{1}{\sqrt{2\pi}} \sin_- x^2 + C(x) x_-, \\ C_-(x) * x_- &= -\frac{1}{2\sqrt{2\pi}} \sin x^2 x_- + \frac{1}{\sqrt{2\pi}} \sin_- x^2 - \frac{1}{4} S_-(x) + \frac{1}{2} C(x) x_-^2. \end{aligned} \quad (21)$$

**PROOF.** Equations (20) and (21) follow on replacing  $x$  by  $-x$  in (17) and (18), respectively, and using (16).  $\square$

**Definition 1** was extended in [1] with the next definition but first of all we let  $\tau$  be a function in  $\mathcal{D}$  having the following properties:

- (i)  $\tau(x) = \tau(-x)$ ,
- (ii)  $0 \leq \tau(x) \leq 1$ ,
- (iii)  $\tau(x) = 1$ , for  $|x| \leq 1/2$ ,
- (iv)  $\tau(x) = 0$ , for  $|x| \geq 1$ .

The function  $\tau_\nu$  is now defined for  $\nu > 0$  by

$$\tau_\nu(x) = \begin{cases} 1, & |x| \leq \nu, \\ \tau(\nu^\nu x - \nu^{\nu+1}), & x > \nu, \\ \tau(\nu^\nu x + \nu^{\nu+1}), & x < -\nu. \end{cases} \quad (22)$$

**DEFINITION 6.** Let  $f$  and  $g$  be distributions in  $\mathcal{D}'$  and let  $f_\nu = f\tau_\nu$  for  $\nu > 0$ . The *neutrix convolution product*  $f \circledast g$  is defined as the neutrix limit of the sequence  $\{f_\nu * g\}$ , provided that the limit  $h$  exists in the sense that

$$N\text{-}\lim_{\nu \rightarrow \infty} \langle f_\nu * g, \varphi \rangle = \langle h, \varphi \rangle, \quad (23)$$

for all  $\varphi$  in  $\mathcal{D}$ , where  $N$  is the neutrix, see van der Corput [5], with its domain  $N'$  the positive real numbers, with negligible functions finite linear sums of the functions

$$\nu^\lambda \ln^{r-1} \nu, \quad \ln^r \nu, \quad \nu^r \sin \nu^2, \quad \nu^r \cos \nu^2 \quad (\lambda \neq 0, r = 1, 2, \dots) \quad (24)$$

and all functions which converge to zero in the normal sense as  $\nu$  tends to infinity.

Note that in this definition the convolution product  $f_\nu * g$  is defined in Gel'fand and Shilov's sense, since the distribution  $f_\nu$  has bounded support.

It was proved in [1] that if  $f * g$  exists in the classical sense or by **Definition 1**, then  $f \circledast g$  exists and

$$f \circledast g = f * g. \quad (25)$$

The following theorem was also proved in [1].

**THEOREM 7.** *Let  $f$  and  $g$  be distributions in  $\mathcal{D}'$  and suppose that the neutrix convolution product  $f \circledast g$  exists. Then the neutrix convolution product  $f \circledast g'$  exists and*

$$(f \circledast g)' = f \circledast g'. \quad (26)$$

We need the following lemma.

**LEMMA 8.** *If  $I_r = N\text{-}\lim_{v \rightarrow \infty} I_r(v)$ , then*

$$\begin{aligned} I_{4r} &= \frac{(-1)^r (4r)! \sqrt{\pi}}{2^{4r+1} (2r)! \sqrt{2}}, \\ I_{4r+1} &= 0, \\ I_{4r+2} &= \frac{(-1)^r (4r+1)! \sqrt{\pi}}{2^{4r+2} (2r)! \sqrt{2}}, \\ I_{4r+3} &= \frac{(-1)^{r+1} (2r)!}{2} \end{aligned} \quad (27)$$

for  $r = 0, 1, 2, \dots$

**PROOF.** It is easily proved that

$$I_3(x) = \frac{1}{2}x^2 \sin x^2 - \frac{1}{2} + \frac{1}{2} \cos x^2 \quad (28)$$

and it follows from (6) and (28) that (27) hold when  $r = 0$ , since

$$S(\infty) = C(\infty) = \frac{1}{2}, \quad (29)$$

see Olver [4].

We also have

$$\begin{aligned} I_{2r}(x) &= \frac{1}{2}x^{2r-1} \sin x^2 + \frac{2r-1}{4}x^{2r-3} \cos x^2 - \frac{(2r-1)(2r-3)}{4}I_{2r-4}(x), \\ I_{2r+1}(x) &= \frac{1}{2}x^{2r} \sin x^2 + \frac{r}{2}x^{2r-2} \cos x^2 - r(r-1)I_{2r-3}(x) \end{aligned} \quad (30)$$

and it follows that

$$\begin{aligned} N\text{-}\lim_{v \rightarrow \infty} I_{2r}(v) &= -\frac{(2r)!(r-2)!}{2^4(2r-4)!r!} N\text{-}\lim_{v \rightarrow \infty} I_{2r-4}(v), \\ N\text{-}\lim_{v \rightarrow \infty} I_{2r+1}(v) &= -\frac{r!}{(r-2)!} N\text{-}\lim_{v \rightarrow \infty} I_{2r-3}(v). \end{aligned} \quad (31)$$

Equations (27) now follow by induction.  $\square$

**THEOREM 9.** *The neutrix convolution  $(\cos_+ x^2) * x^r$  exists and*

$$(\cos_+ x^2) \circledast x^r = \sum_{i=0}^r \binom{r}{i} (-1)^{r-i} I_{r-i} x^i \quad (32)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} (\cos_+ x^2) \circledast 1 &= \frac{\sqrt{\pi}}{2\sqrt{2}}, \\ (\cos_+ x^2) \circledast x &= \frac{\sqrt{\pi}}{2\sqrt{2}} x. \end{aligned} \quad (33)$$

**PROOF.** We put  $(\cos_+ x^2)_\nu = (\cos_+ x^2) \tau_\nu(x)$ . Then the convolution  $(\cos_+ x^2)_\nu * x^r$  exists and

$$(\cos_+ x^2)_\nu * x^r = \int_0^\nu \cos t^2 (x-t)^r dt + \int_\nu^{\nu+\nu^{-\nu}} \tau_\nu(t) \cos t^2 (x-t)^r dt. \quad (34)$$

□

Now,

$$\begin{aligned} \int_0^\nu \cos t^2 (x-t)^r dt &= \sum_{i=0}^r \binom{r}{i} \int_0^\nu x^i (-t)^{r-i} \cos t^2 dt \\ &= \sum_{i=0}^r \binom{r}{i} (-1)^{r-i} I_{r-i}(\nu) x^i \end{aligned} \quad (35)$$

and it follows that

$$N\text{-}\lim_{\nu \rightarrow \infty} \int_0^\nu \cos t^2 (x-t)^r dt = \sum_{i=0}^r \binom{r}{i} (-1)^{r-i} I_{r-i} x^i. \quad (36)$$

Further, it is easily seen that, for each fixed  $x$ ,

$$\lim_{\nu \rightarrow \infty} \int_\nu^{\nu+\nu^{-\nu}} \tau_\nu(t) \cos t^2 (x-t)^r dt = 0 \quad (37)$$

and (32) follows from (34), (36), and (37). Equations (33) follow immediately.

**COROLLARY 10.** *The neutrix convolution  $\cos_- x^2 \circledast x^r$  exists and*

$$(\cos_- x^2) \circledast x^r = \sum_{i=0}^r \binom{r}{i} (-1)^{r-i+1} I_{r-i} x^i \quad (38)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$\begin{aligned} (\cos_- x^2) \circledast 1 &= -\frac{\sqrt{\pi}}{2\sqrt{2}}, \\ (\cos_- x^2) \circledast x &= -\frac{\sqrt{\pi}}{2\sqrt{2}} x. \end{aligned} \quad (39)$$

**PROOF.** Equation (38) follows on replacing  $x$  by  $-x$  in (32) and noting that  $I_r$  must be replaced by

$$N\text{-}\lim_{\nu \rightarrow \infty} I_r(-\nu) = (-1)^{r-1} N\text{-}\lim_{\nu \rightarrow \infty} I_r(\nu) = (-1)^{r-1} I_r. \quad (40)$$

Equations (33) follow.  $\square$

**COROLLARY 11.** *The convolution  $(\cos x^2) \circledast x^r$  exists and*

$$(\cos x^2) \circledast x^r = 0 \quad (41)$$

for  $r = 0, 1, 2, \dots$

**PROOF.** Equation (41) follows from (32) and (38) on noting that  $\cos x^2 = \cos_+ x^2 + \cos_- x^2$ .  $\square$

**THEOREM 12.** *The neutrix convolution  $C_+(x) \circledast x^r$  exists and*

$$C_+(x) \circledast x^r = \frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^r \binom{r+1}{i} (-1)^{r-i+1} I_{r-i+1} x^i \quad (42)$$

for  $r = 0, 1, 2, \dots$ . In particular

$$C_+(x) \circledast 1 = 0, \quad (43)$$

$$C_+(x) \circledast x = \frac{1}{8}. \quad (44)$$

**PROOF.** We put  $[C_+(x)]_\nu = C_+(x)\tau_\nu(x)$ . Then the convolution product  $[C_+(x)]_\nu * x^r$  exists and

$$[C_+(x)]_\nu * x^r = \int_0^\nu C(t)(x-t)^r dt + \int_\nu^{\nu+\nu-\nu} \tau_\nu(t)C(t)(x-t)^r dt. \quad (45)$$

We have

$$\begin{aligned} & \sqrt{\frac{\pi}{2}} \int_0^\nu C(t)(x-t)^r dt \\ &= \int_0^\nu (x-t)^r \int_0^t \cos u^2 du dt \\ &= \int_0^\nu \cos u^2 \int_u^\nu (x-t)^r dt du \\ &= -\frac{1}{r+1} \int_0^\nu \cos u^2 [(x-\nu)^{r+1} - (x-u)^{r+1}] du \\ &= -\frac{1}{r+1} \int_0^\nu \sum_{i=0}^r \binom{r+1}{i} x^i [(-\nu)^{r-i+1} - (-u)^{r-i+1}] \cos u^2 du \end{aligned} \quad (46)$$

and it follows that

$$N\text{-}\lim_{v \rightarrow \infty} \int_0^v C(t)(x-t)^r dt = \frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^r \binom{r+1}{i} (-1)^{r-i+1} I_{r-i+1} x^i. \quad (47)$$

Further, it is easily seen that, for each fixed  $x$ ,

$$\lim_{v \rightarrow \infty} \int_v^{v+v^-} \tau_v(t) C(t)(x-t)^r dt = 0 \quad (48)$$

and (42) now follows immediately from (45), (47), and (48).  $\square$

**COROLLARY 13.** *The neutrix convolution  $C_-(x) \circledast x^r$  exists and*

$$C_-(x) \circledast x^r = \frac{\sqrt{2}}{\sqrt{\pi}(r+1)} \sum_{i=0}^r \binom{r+1}{i} (-1)^{r-i} I_{r-i+1} x^i \quad (49)$$

for  $r = 0, 1, 2, \dots$ . In particular,

$$C_-(x) \circledast 1 = 0, \quad (50)$$

$$C_-(x) \circledast x = -\frac{1}{8}. \quad (51)$$

**PROOF.** Equation (49) follows on replacing  $x$  by  $-x$  and  $I_r$  by  $(-1)^{r-1} I_r$  in (42). Equations (50) and (51) follow.  $\square$

**COROLLARY 14.** *The neutrix convolution  $C(x) \circledast x^r$  exists and*

$$C(x) \circledast x^r = 0 \quad (52)$$

for  $r = 0, 1, 2, \dots$

**PROOF.** Equation (52) follows from (43) and (50) on noting that  $C(x) = C_+(x) + C_-(x)$ .  $\square$

**ACKNOWLEDGMENT.** This research was carried out during the second author's visit to the University of Putra Malaysia (UPM) and partially supported under the Grant IRPA 09-02-04-0259-EA001. The authors greatly acknowledge the partial support.

## REFERENCES

- [1] B. Fisher, *Neutrices and the convolution of distributions*, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. **17** (1987), no. 1, 119–135.
- [2] I. M. Gel'fand and G. E. Shilov, *Generalized Functions. Vol. 1. Properties and Operations*, Academic Press, New York, 1964.
- [3] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, Academic Press, California, 2000.
- [4] F. W. J. Olver, *Asymptotics and Special Functions*, Computer Science and Applied Mathematics, Academic Press, New York, 1974.

[5] J. G. van der Corput, *Introduction to the neutrix calculus*, J. Analyse Math. 7 (1959/1960), 281–399.

Adem Kılıçman: Department of Mathematics, University of Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

*Current address:* Institute of Advanced Technology, University of Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

*E-mail address:* [akilic@fsas.upm.edu.my](mailto:akilic@fsas.upm.edu.my)

Brian Fisher: Department of Mathematics, University of Leicester, Leicester, LE1 7RH, England

*E-mail address:* [fbr@le.ac.uk](mailto:fbr@le.ac.uk)

## Special Issue on Boundary Value Problems on Time Scales

### Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

|                        |                 |
|------------------------|-----------------|
| Manuscript Due         | April 1, 2009   |
| First Round of Reviews | July 1, 2009    |
| Publication Date       | October 1, 2009 |

### Lead Guest Editor

**Alberto Cabada**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [alberto.cabada@usc.es](mailto:alberto.cabada@usc.es)

### Guest Editor

**Victoria Otero-Espinar**, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [mvictoria.oter@usc.es](mailto:mvictoria.oter@usc.es)