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We consider a nonlinear counterpart of a compactness lemma of Simon (1987),
which arises naturally in the study of doubly nonlinear equations of elliptic-
parabolic type. This paper was motivated by previous results of Simon (1987),
recently sharpened by Amann (2000), in the linear setting, and by a nonlinear
compactness argument of Alt and Luckhaus (1983).
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1. Introduction. Typical applications where the compactness argument
stated below is useful are those in which the following kind of doubly non-
linear equations arises:

dB(u)
dt

where A is elliptic and B is monotone (not strictly). It is the case, for example,
in porous medium, semiconductor equations, and so forth.

In our application, we considered the injection moulding of a thermoplastic
with a mold of small thickness with respect to its other dimensions. By aver-
aging Navier-Stokes equations across the thickness of the mold and under an
assumption (of Hele-Shaw) stating that the velocity field is proportional to the
pressure gradient, the pressure equation can be written as a doubly nonlinear
equation [3].

Note that in this context, the equation can degenerate to an elliptic one. In
order to get existence of a solution, one usually perform a time discretiza-
tion, use some result on elliptic operator, and pass to the limit as the time
step goes to zero. In nonlinear problems, compactness in time and space is
then required. The compactness in space is easily obtained for u from a coer-
civeness assumption on the elliptic part A, but we have no estimate on ou /ot
since B could degenerate. Theorem 2.1 uses the space compactness of u and
some time regularity on B(u) to derive a compactness for B(u), which in turn
can be useful to pass to the limit in nonlinear terms of A (provided A has an
appropriate structure, e.g., B-pseudomonotone [4]).

+Au) =f, (1.1)

2. Main result. We consider two Banach spaces E; and E>. Let T > 0, p €
[1,+o], and B a (nonlinear) compact operator from E; to E», that is, which
maps bounded subsets of E; to relatively compact subsets of E».
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THEOREM 2.1. Let U be a bounded subset of L* (0, T;E,) such thatV = B(U)
is a subset of L? (0, T;E») bounded in L" (0, T;E>) with v > 1. Assume that

P}Hg [lv(-+h) =Vl e, =0 uniformly forveV. (2.1)

Then V is relatively compact in L¥ (0, T;E») (and in 6(0,T;E>) if p = + o).

REMARK 2.2. (1) One can easily check that Theorem 2.1 holds if we assume
only U bounded in L}.(0,T;E;) and V bounded in LI, (0, T;E>).

(2) In the case where B is the canonical injection from E; to E», the assump-
tion on B corresponds to the compactness of the embedding of E; into E», and
the conclusion falls in the scope of previous results of Simon [5, Theorem 3].

(3) The point in this result is that we do not make any structural assumption
on B (e.g., strict monotony which would fall in the scope of results of Visintin
[6]) except compactness. Note that in the case of a compact embedding of E;
into E», B needs only to be continuous from E; to E» for the E»-topology.

IDEA OF THE PROOF. A sufficient condition for compactness is to prove that
for each couple (t;,t>2), fttf v(t)dt describes a relatively compact subset of E»
as v describes V. First, the u(t), u € U, are truncated in norm at height M > 0
and form a bounded subset of E; which B maps to a relatively compact subset
VM(t) of E,. The key point is that, thanks to equi-integrability assumption,

ttlz v (t)dt can be approximated uniformly in v by Riemann sums involving
truncated elements of the VM (t).

PROOF. Thanks to the equi-integrability (2.1) of V and results of [5], we only
have to prove that for each (t1,t2) such that 0 < t; <ty < T, the set

t2
K= {J v(t)dt, v e V} (2.2)

3]

is relatively compact in E,. For that purpose, we introduce foru € U and M > 0
the measurable subset of [0, T] defined by

G = {tel0,11, [lu)lly, >M}. 2.3)
From our assumptions on U, there exists a constant C > 0 such that
Vu S U, ||u\|L1(0‘T;E1) =< C, (24)

and since we have

u(t
meas (G3) =J Mldtsjﬂ%dts%, (2.5)

u
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that gives

lim meas (GY) =0, uniformly in u. (2.6)

—+00

Introducing the truncated functions

u(t) ift¢GM,
uM(t) = © # G (2.7)
0 otherwise,
we have by construction
VM >0, VueU, Vte[0,T], [[u™®)|y <M. (2.8)
O

LEMMA 2.3. Under condition (2.1), K can be uniformly approximated by Rie-
mann sums involving elements of the form v™ (t) = B(uM (t)) in the following
sense: given ¢ > 0, there exist integers N and M such that for allv = B(u) €V,
there exists S{Y M e 10, h[ such that

v(t)dt—Zhv N o+sMIl <, (2.9)
t i=1 E»
where h = (t;—t1)/N and EN =t +ih.
PROOF. We first note that
tp
J v(t)dt—zhv N+ sh)
t1
= (2.10)

to N
:Jt ('U(t)_z”UM( i\jl-‘rssj'M)X]Eﬁl’g{V](t))dt
i=1

1

Then we prove the following inequality, where v’ stands for the conjugate

exponent of r:
1 h rto
,J J dtds
h 0 Jy

E>

<oTl-lp sup ||v( +0) = V|| 0,17- oE2)
o€~

1/
+2(meas G2 v [V =B(O)|1r (0,78,

v(t)fzv N, +s) Xjey e (1)

(2.11)
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Denote by I the left-hand side of the stated inequality. Then

1
_EJ J [[v(t) —v™(EY | +5)l|p,dtds

(2.12)
:—ZJN J l[v(t) —v™(s)||g,dt ds.
Using Fubini’s theorem and setting o = s —t, we get
-t v
v(t)—-v"(t+0o)||. dodt, (2.13)
Ll 1LNHII e,
which gives, thanks to a new application of Fubini’s theorem,
min(EN,EN o y
v(t)-v'(t+0)||gdtdo
ST e,
(2.14)
min(tp,tp—o)
J J ||v(t)—vM(t+U)||E2dtd(T.
max(ty,ty—
From the definition of v™, we thus have
min(tp,tr—0o)
Isfj J ||v(t)—v(t+(r)||E dtdo
h max(ty,t]— 2
(2.15)

min(tp,tp—0)
J J Xgu (t+0)||[v () = B(0)||g,dtdo.

max(ly,t;—0)
As V is a bounded subset of L" (0, T;E>), one has the second term bounded by

min(tp,t2-0) ur' oot r v
t+o)dt J v(t)—-B(0 dt do
hJ (Jmax (t1,t1 - U)XGM( ) ) ( 51 || ( ) ( )HEZ ) (2.16)

< 2(measGM)"

v =BO)|1r 0,7,
and the Holder inequality gives the announced estimation (2.11).
Using (2.1) and (2.6), and as v belongs to a bounded subset V of L" (0, T; E>»),
we conclude from (2.11) that
1 h rto
,J j dtds — 0, (2.17)
hlJoJy

E;

v(t)—Zv L1 +8)Xpgy e (D)
i=1
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when M N go to infinity, uniformly in v. We claim that there exists at least one
s = sv M < [0,h] such that

J ’
t

when M, N go to infinity, uniformly in v. Indeed, we set, for the sake of read-
ability,

dt — 0, (2.18)
E

N
v(t) - Z vM (gL, +511>]’M)X]§£\£1,§1i\7](t)
i=1

ty

SN (s) =J v(t)— Zv N, +s) Xjgy gy (D)) dt (2.19)
t1 E»
so that the uniform convergence (2.17) reads
1k
—J Sum(s)ds —0, (2.20)
h 0 !

when M,N = 1/h go to infinity, uniformly in v. Then for fixed v, N, and M,
there exists at least one s = s)"™ € [0, h] such that

h
SFw(spM) < %L Suam(s)ds. (2.21)

If not, we would have the reverse strict inequality for all s € [0,h] which by
averaging on [0, h] would lead to a contradiction. Then as fﬁ’M is positive, the
uniform convergence (2.20) implies

Sy m(sM) —o, (2.22)

when M,N = 1/h go to infinity, uniformly in v, which is exactly (2.18).
A fortiori, (2.9) holds thanks to (2.10) and since

tr N
L (v(t) -2 vNED “g’M)X]g{VléﬁV](t))dt
1

i=1
t>
S /[
ty

This proves Lemma 2.3. ]

F2 (2.23)

dt.
E

N
V() = 2 M EL M) Xy ey (0
i=1
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To conclude the proof of Theorem 2.1, note that Lemma 2.3 means that K C
&Bg, + Ku N, where B, is the unit open ball of E, and

N
KN ={zth( N +shM), oM =B(uM), u e U]». (2.24)
i1

For fixed M, N and from (2.8), we note that uM(Efﬂl + si\[‘M) is bounded in E;
uniformly in u € U. As B is compact, Ky n is thus a relatively compact subset
of E». Thus, K is also relatively compact in E.

COROLLARY 2.4. Let U be a bounded subset of L'(0,T;E;) such that V =
B(U) is bounded in L" (0, T;E») with v > 1. Assume that

ov ov
E‘{E’ vev} (2.25)

is bounded in L' (0,T;E). Then V is relatively compact in L? (0, T;E>) for any
p < +oo,

PROOF. Condition (2.1) is satisfied (see [5, Lemma 4]). O
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