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ON THE PRIME SUBMODULES OF MULTIPLICATION
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By considering the notion of multiplication modules over a commutative ring with
identity, first we introduce the notion product of two submodules of such mod-
ules. Then we use this notion to characterize the prime submodules of a multi-
plication module. Finally, we state and prove a version of Nakayama lemma for
multiplication modules and find some related basic results.

2000 Mathematics Subject Classification: 16D10.

1. Introduction. Let R be a commutative ring with identity and let M be a
unitary R-module. Then, M is called a multiplication R-module provided for
each submodule N of M; there exists an ideal I of R such that N = IM. Note
that our definition agrees with that of [1, 2], but in [6] the term multiplication
module is used in a different way. (In this paper, an R-module M is a multipli-
cation if and only if every submodule of M is a multiplication module in the
above sense.) Recently, prime submodules have been studied in a number of
papers; for example, see [3, 4, 5]. Now in this paper, first we define the notion
of product of two submodules of a multiplication module and then we ob-
tain some related results. In particular, we give some equivalent conditions for
prime submodules of multiplication submodules. Finally, we state and prove
a version of Nakayama lemma for multiplication modules.

2. Preliminaries. Throughout this paper, R denotes a commutative ring
with identity and all related modules are unitary R-modules.

DEFINITION 2.1. A proper submodule K of M is called prime if ¥m € K, for
reRand me M, thenr € (K: M) or m € K, where (K:M)={reR|vM <
M3,

THEOREM 2.2 (see [5]). Let K be a submodule of M. Then the following state-
ments are satisfied:
(i) K isprimeifandonlyifP = (K : M) is a prime ideal of R and R / P-module
M /K is torsion-free,
(i) if (K : M) is a maximal ideal of R, then K is a prime submodule of M.

For any R-module M, let Spec(M) denote the collection of all prime submod-
ules of M. Note that some modules M have no prime submodules (i.e., Spec(M)
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is empty); such modules are called primeless. For example, the zero-module is
primeless. In [5], some nontrivial examples are shown and some conditions for
primeless modules are given.

DEFINITION 2.3. An R-module M is a multiplication module if for every
submodule N of M, there is an ideal I of R such that N = IM.

LEMMA 2.4 (see [1]). Let M be a multiplication module and let N be a sub-
module of M. Then N = (ann(M/N))M.

LEMMA 2.5 (see [1, Proposition 1.1]). An R-module M is a multiplication if
and only if for each m in M, there exists an ideal I of R such that Rm = IM.

LEMMA 2.6 (see [1]). An R-module M is a multiplication if and only if

Naea (IAM) = (Naea [Ia+ann(M) )M (2.1)

for any collection of ideals Iy (A € A) of R.

THEOREM 2.7 (see [1, Theorem 2.5]). Let M be a nonzero multiplication R-
module. Then,
(i) every proper submodule of M is contained in a maximal submodule of
M;
(i) K is a maximal submodule of M if and only if there exists a maximal
ideal P of R such that K = PM + M.

THEOREM 2.8 (see [1, Corollary 2.11]). The following statements are equiv-
alent for a proper submodule N of M:
(i) N is a prime submodule of M;
(i) ann(M/N) is a prime ideal of R;
(iii) N = PM for some prime ideal P of R with ann(M) < P.

THEOREM 2.9 (see [1, Theorem 3.1]). Let M be a faithful multiplication R-
module. Then the following statements are equivalent:
(i) M is finitely generated;
(ii) AM < BM if and only if A < B;
(iii) for each submodule N of M, there exists a unique ideal I of R such that
N =1IM;
(iv) M = AM for any proper ideal A of R;
(v) M + PM for any maximal ideal P of R.

DEFINITION 2.10. Let N be a proper submodule of M. Then, the radical of
N denoted by M-rad(N) or v (N) is defined in [1] to be the intersection of all
prime submodules of M containing N.

THEOREM 2.11 (see [1, Corollary 2.11]). Let N be a proper submodule of a
multiplication R-module M. Then M-rad(N) = -/AM, where A = ann(M /N).
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DEFINITION 2.12. Let M be an R-module. Then, the radical of M denoted
by rad(M) is defined to be the intersection of the maximal submodules of M
if such exists, and M otherwise.

Let Jt denote the collection of all maximal ideals of R. Define P; (M) = {P €
M| M=PM} and P,(M) = {P € Ml | ann(M) < P}. Now, define J; (M) = n{P |
PeP (M)} and Jo(M) =n{P|P € P,(M)}.

THEOREM 2.13 (see [1, Theorem 2.7]). Let M be a multiplication R-module.
Thenrad(M) = J; (M)M = Jo(M)M.

3. The product of multiplication submodules

DEFINITION 3.1. Let M be an R-module and let N be a submodule of M such
that N = IM for some ideal I of R. Then, we say that I is a presentation ideal
of N or, for short, a presentation of N. We denote the set of all presentation
ideals of N by Pr(N).

Note that it is possible that for a submodule N, no such presentation ideal
exists. For example, if V is a vector space over an arbitrary field with a proper
subspace W (+ 0 and V), then W does not have any presentations. By Lemma
2.4, it is clear that every submodule of M has a presentation ideal if and only
if M is a multiplication module. In particular, for every submodule N of a
multiplication module M, ann(M/N) is a presentation for N.

Let L(R) and L(M) denote the lattices of ideals of R and submodules of M,
respectively. Define the relation ~ on L(R) as follows:

I~] < IM=]M. (3.1)

It is easy to verify that this relation is an equivalence relation on L(R). We
denote the equivalence class of I € L(R) by [I].

THEOREM 3.2. Let M be a faithful multiplication R-module. Then, the follow-
ing statements are equivalent:
(i) M is finitely generated;
(ii) each equivalence class of the relation ~ is a singleton;
(iii) the map

@ :L(R) — L(M) (3.2)

defined by @ (I) = IM is a lattice isomorphism;
(iv) for every proper ideal I of R, [I] = {I};
(v) for any maximal ideal P of R, [P] = {P}.

PROOF. (i)=(ii) follows from Theorem 2.8, Definition 3.1, and Theorem 2.9.

(ii)=(iii). By Theorem 2.8, we conclude that @ is bijective and order-preserv-
ing. Obviously, (I + J)M = IM + JM and by Lemma 2.5, INnJ)M = IM n JM
since M is faithful. Therefore, ¢ is a lattice isomorphism.
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(iii) = (iv), (iv)=(v), and (v)=(i) are an immediate consequence of Theorem 2.8.
|

DEFINITION 3.3. Let N =M and K = JM for some ideals I and J of R. The
product of N and K is denoted by N - K or NK is defined by IJM.

Clearly, NK is a submodule of M and contained in N n K. Now, we show that
the product of two submodules is defining an operation on submodules of M.

THEOREM 3.4. Let N =IM and K = JM be submodules of a multiplication
R-module M. Then, the product of N and M is independent of presentations of
N and K.

PROOF. Let N=I1M =1, M =N’ and K = J1M = J,M = K’ for ideals I; and
Ji of R, i = 1,2. Consider rsm € NK = /1M for some v € I, s € J1, and
m e M. From J1M = JoM, we have

n
sm=>rm; ti€Jp miM. (3.3)
i-1
Then,
n
rsm = Zri(rmi). (3.4)

i=1

From rm; € [ M = I,M, we conclude that

k
rm; = Ztijm;j, tij € I, m;jeM. (3.5)
j=1
Thus,
n k
rsm= Z z Titijm;j. (3.6)

i=1j=1

Therefore, ¥sm € I>JoM, and hence I,J1M < I,J>M. Similarly, we have
I,JoM < I, J1M. This completes the proof. O

PROPOSITION 3.5. Let M be a multiplication module N, and let K and L be
submodules of M. Then the following statements are satisfied:
(i) L(M), the lattice of submodules of M with operation product on submod-
ules, is a semiring;
(ii) the product is distributive with respect to the sum on L(M);
(iii) (K+L)(KNL) € KL;
(iv) KNnL = KL provided K + L = M (in this case, K and L are said to be
coprime or comaximal).
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PROOF. (i), (ii), (iii) are obtained from Definition 3.3, Lemma 2.5, the well-
known related results of the ideals theory, and the fact that > cx kM =
(Zkex I)M.

(iv) K + L = M implies that M(K N L) < KL by (iii), and hence KNnL < KL.
Clearly KL < KN L. Therefore KL = KNL. O

LEMMA 3.6. Let N and K be submodules of a multiplication module M. Then,
(i) the ideals ann(M/N) -ann(M/K) and ann(M /NK) are presentations of
NK;
(ii) if M is finitely generated, then ann(M /N) -ann(M /K) = ann(M /NK).

PROOF. (i) By Lemma 2.4 and Theorem 3.4, ann(M/N) and ann(M/K) are
presentations for N and K, respectively. Thus, by Definition 3.3, MN =
[ann(M/N) -ann(M /K)]M. Therefore, (ann(M/N) -ann(M/K)) is a presenta-
tion for MN.

(i) By Lemma 2.4, we have MN = ann(M/NK) and hence by Theorem 2.8
and (i), we conclude that

ann(M/N)-ann(M/K) = ann(M /NK). 3.7)
O

REMARK 3.7. (i) Recall that by Lemma 2.5, for any m € M, we have Rm = IM
for some ideal I of R. In this case, we say that I is a presentation ideal of m or,
for short, a presentation of m and denote it by Pr(m). In fact, Pr(m) is equal
to Pr(Rm).

(ii) For m,m’ € M, by mm’, we mean the product of Rm and Rm’, which is
equal to IJM for every presentation ideals I and J of m and m’, respectively.

PROPOSITION 3.8. Let M be a multiplication R-module. Let N,K,N; € I be
submodules of M, s € R, and k any positive integer. Then the following state-
ments are satisfied:

(d) Pr(Xic;Ni) = 2lic/ Pr(Ny);
(i) Pr(nierN;i) = (Nier[Pr(N;) +ann(M)])M;
(iii) Pr(SF,mi) € S, Pr(m;);
@iv) Pr(sm) = sPr(m);
(v) Pr(NK) =Pr(N) -Pr(K);
(vi) Pr(N¥) = (Pr(N));
(vii) Pr(m¥) = (Pr(m))¥;
(viii) Pr(M-rad(N)) = M-rad(Pr(N)).

PROOF. (i) Let I; be presentation ideals of N; for every i € I. Then it is easy
to verify that

D.Ni=2 (M;) = (Zh)M. (3.8)

iel iel iel

Thus, Pr(X;c; Ni) = X Pr(Ny).
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(ii) It is an immediate consequence of Lemma 2.6.
(iii) By Remark 3.7(i), we have

Pr(éml) =Pr (Rimi) cPr (Rile) —Pr(éRn@) = iPr(mi).

i-1 i=1 i-1
(3.9)

(iv), (v), (vi), and (vii) are an immediate consequence of Theorem 3.4 and
Remark 3.7.
(viii) It follows from Theorem 2.11. O

DEFINITION 3.9. Let M be a multiplication R-module and let N be a sub-
module of M. Then,
(i) N is called nilpotent if N*¥ = 0 for some positive integer k, where N¥
means the product of N, k times;
(i) an element m of M is called nilpotent if m* = 0 for some positive
integer k.
The set of all nilpotent elements of M is denoted by Ny,.

THEOREM 3.10. Let M be a multiplication module. A submodule N of M is
nilpotent if and only if for every presentation ideal I of N, I¥ < ann(M) for some
positive integer k € N.

PROOF. Let I be a presentation ideal of N. If N is nilpotent, then N¥ = 0 for
some positive integer k, that is, N = [¥M = 0. Thus, I¥ < ann(M). Conversely,
suppose that I¥ < ann(M) for some presentation ideal I of N. Then,

Nk =1¥M c ann(M)M = 0. (3.10)

Therefore, N is nilpotent. |

COROLLARY 3.11. Let M be a faithful R-multiplication module and let N be
a submodule of M. Then, N is nilpotent if and only if every presentation ideal
of N is a nilpotent ideal.

THEOREM 3.12. Let M be a multiplication module. Then, Ny, is a submodule
of M and M /Ny has no nonzero nilpotent element.

PROOF. Letx,y € Ny, say x™ =0and y" = 0. Consider presentation ideals
I and J of x and y, respectively. Then x™ ="M = 0 and y™ = I""M = 0. Since
Rx =IM and Ry = JM, then by Lemma 2.5, we have R(x +y) € Rx +Ry =
IM+JM = (I+J)M, then I + ] is a presentation ideal for x +y. Let [ = m +n.
Then,

l
(X+y)m+n = +])™"M = (

(i) <I)i(1>l-i)M —(OM=(0), (.11)

i=0
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and hence x + y € Ny. Now, let m € Ny and r € R. Consider presentation
ideal I of m. Thus, mk = XM = 0 since Rrm = (*I)M < IM. Thus, (rm)k =
(¥I)*M < I¥M = (0) and hence »#m € Ny;. Therefore, Ny is a submodule of M.

Let X € M/Ny be represented by x. Then, x" is represented by x" so that
x™ = 0. Thus, x" € Ny; and hence (x")* = 0 for some k > 0. Therefore, x € Ny
and so x = 0. O

THEOREM 3.13. Let N be a submodule of a multiplication R-module M. Then
M-rad(N) = {m e M | mk N for some k = 0}.

PROOF. Let
B={meM|mkc N for some k > 0}. (3.12)

First, we show that B is a submodule of M. Let x,y € B, and let I and J be
presentation ideals of x and y, respectively. Then, x™ =" and y™ = JM = N
for some positive integers m and n, and presentation ideals I, J of x and Yy,
respectively. Let k = max{m,n}. Then

(x+ )% = (IM+JM)* = ((I+])M)*
ko (k . . (3.13)
=(I+)*M =) (i)(IM)l(JM)"‘l,

i=0

that is, x + v € B. Also, for x € B and v € R, we have (¥x)" < N since x"™ < N.
Thus, B is a submodule of M. Suppose that m € B and A is a presentation of
m. Then, m* = A*M < N for some n = 1 and hence by Theorem 2.11, we have

M-rad (m*) = VAKM = VAM < M-rad(N). (3.14)

Thus, M-rad(Rm) = M-rad(AM) < M-rad(N) and this implies that B
M-rad(N).

Conversely, let m € M-rad(N) = ~/IM, where I = ann(M/N). Then, m
>, rym; for r; € VT and m; € M. Thus, ri"i e I for some n; > 1. Thus, for a
sufficiently large n, we have m* < IM = N and hence M-rad(N) < B. Therefore,
B =M-rad(N). O

N

COROLLARY 3.14. Let M be a multiplication R-module. Then Ny, is the inter-
section of all prime submodules of M.

PROOF. By Theorem 2.11, we have M-rad(0) = +/AM, where A = ann(M),
and by Theorem 3.13, M-rad(N) = Ny,. O

COROLLARY 3.15. Let M be a faithful multiplication R-module. Then Ny =
NM, where N is the nilradical of R.
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THEOREM 3.16. Let P be a proper submodule of a multiplication module M.
Then P is prime if and only if

UVecP=UcP or VcP (3.15)

for each submodule U andV of M.

PROOF. Let P be prime and UV € P,but U ¢ P and V ¢ P for some sub-
modules U and V of M. Suppose that I and J are presentations of U and V,
respectively. Then UV =IJM < P. Thus, there are ¥y € U—-P and sx € U -P
for some » € I and s € J. Thus, ¥sx € P and hence ¥M < P, thatis, ry € P,
which is a contradiction.

Conversely, suppose that condition (3.15) is true. Let ¥x € P for some v € R
and x € M — P, but ¥M ¢ P; then, rm ¢ P for some m € M. Let I and J be
presentation ideals of rx and m, respectively. Then

R(rx)-(Rm)=(Rx)-(Rrm)=IM-JM =I1JM < P. (3.16)

Now, by hypothesis, we must have Rx < P or R¥m < P, which implies that
x € P or rm € P, which is a contradiction. Therefore, P is prime. O

COROLLARY 3.17. Let P be a proper submodule of M. Then P is prime if and
only if

m-mcP=mecP or m e€P (3.17)

for every m,m’ € M.

PROOF. If P is prime, then, clearly, (3.17) is true. Conversely, suppose that
(3.17) is true, and UV < P for submodules U and V of M, but U ¢ P and V ¢ P.
Thus, thereareu e U—=Pand v € V—P. Thenuv = RuRv < UV < P and hence
by (3.17), we must have u € U or v € V, which is a contradiction. Therefore, P
is prime. O

DEFINITION 3.18. An element u of an R-module M is said to be a unit pro-
vided that u is not contained in any maximal submodule of M.

THEOREM 3.19. Let M be a multiplication R-module. Then u € M is a unit if
and only if (u) = M.

PrROOF. The sufficiency is clear. For a necessary part, let u be a unit ele-
ment. Then (u) is not contained in any maximal submodule of M. Thus, by
Theorem 2.7, we must have (u) = M. O

THEOREM 3.20. Let M be an R-module (not necessarily multiplicative) such
that M has a unit u. Then m € rad(M) if and only if u —vm is unit for every
r €R.

PROOF. See [7, Theorem 4.8]. O
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THEOREM 3.21. Every homomorphic image of a multiplication module is a
multiplication module.

PROOF. Let M be a multiplication R-module, ¢ : M — M’ an R-module ho-
momorphism, and K = ¢(M). Let k € K, then k = (¢pm) for some m € M.
Since M is a multiplication, then by Lemma 2.5, there is an ideal I of R such
that Rm = IM. Thus,

QUM)=1p(M)=IK =@ (Rm) =Rp(m) = Rk. (3.18)

Therefore, by Lemma 2.5, K is a multiplication R-module. O

COROLLARY 3.22. Let M be a multiplication R-module and N a submodule
of M. Then, M /N is a multiplication R-module.

THEOREM 3.23 (a version of Nakayama lemma). Let M be a faithful multi-
plication R-module such that M has a unit w. Then, for every submodule N, the
following conditions are equivalent:

(i) N is contained in every maximal submodule of M;
(ii) uw—rx is a unit for allv € R and for all x € N;
(iii) if M is a finitely generated R-module such that NM = M, then M = 0;
(iv) if M is finitely generated and K is a submodule of M such that M =
NM +K, then M =K.

PROOF. (i)=(ii) is an immediate consequence of Theorem 3.19.

(ii)=(iii). Since M is finitely generated, there must be a minimal generating
set X = {my,...,myu} of M. If M # 0, then m; # 0 by minimality. Now, let I be
a presentation of N. Then, NM = M implies that M = IM - M = M, and since
M is faithful, then by Theorem 2.13, we have N crad(M) = J1(M)M < J(R)M.
Thus, m; = jimy + jomo + - - - + jumy, (ji € J(R)) whence j;m; = m; so that
(1-j1)m;=0ifn=1, and

(1—j1)m1 =j2m2+---+jnmn, n>1. (319)

Since 1 —j; isaunitin R, m; = (1—j1) ' A —ji)mi+ -+ (1—j1) L jnmn.
Thus, if n = 1, then m; = 0, which is a contradiction. If n > 1, then m; is
a linear combination of m,, ms,..., my; consequently, {mo,...,m,} generates
M, which contradicts the choice of X.

(iii)=(iv). Since for every submodule K/N of M/N, we have K/N =
ann (M /N/K/N)M/N = ann (M /K)M /N, then by Corollary 3.22, M/N is a mul-
tiplication R-module. Now, it is easy to verify that rad(M/N) = M /N and hence,
by (iii), we must have M = K.

(iv)=(). Let K be any maximal submodule of M, then K =< NM = K. Conse-
quently, NM + M = M by maximality of K, otherwise M = K by (iv) a contradic-
tion. Therefore, N = NM c K. O
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