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We study the duality theory for damped hyperbolic equations. These systems have
positive controls and convex cost functionals. Our main results lie in the applica-
tion of duality theorem, that is, inf J = sup K, on various cost functions.
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1. Introduction. Lions [2] introduced optimal control problems of the va-
riety of distributed parameter systems, for example, elliptic, parabolic, and
hyperbolic. Here, we see that adjoint state systems are given cost functional
and distributed parameter systems. Duality theory is inf J = sup K, where J sat-
isfies systems and K satisfies adjoint state systems. The duality theory for the
corresponding parabolic systems has been given by Chan [1] and Tanimoto [7].
Park and Lee [5, 6] studied the duality theory for hyperbolic systems. Also, they
[4] obtained same results for hyperbolic systems with damping terms. In this
paper, we study the duality theory for damped hyperbolic systems with pos-
itive controls. These systems have various convex cost functionals. The main
objective is to prove the duality theorem for damped hyperbolic systems with
positive controls and various cost functions. The main tools are integration by
parts and Green’s formula.

2. Preliminaries. Let X be a Hilbert space (-,-) and let || - ||x denote the
inner product and the induced norm on X; X’ denotes the dual space of X and
(-, ") x".x denotes the dual pairing between X" and X. We introduce underlying
Hilbert spaces to describe damped second-order evolution equations. Let H
be a real pivot Hilbert space; its norm || - ||y is simply denoted by | - |g. For
i=1,2,let V; be a real separable Hilbert space. Assume that each pair (V;,H)
is a Gelfand triple space with a notation V; — H = H' — V. We suppose that
V1 is continuously embedded in V5. Then we see that V; =« Vo, =« H=H' -~
V; — V' and the equalities (b, Wy, = (D, W)y, for ¢ € Vi, @ €V, and
(¢7W>v{,v1 = (¢,p)g for ¢ € H, ¢y € V hold. Let T be a positive number. We
define a function space W(0,T) by

W(0,T) = {y | ¥ €L*(0,T;V1), ¥ € L*(0,T;V2), ¥ € L*(0,T;V])}  (2.1)
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with an inner product

T
Ouy2worn = L {(yl(t)vyZ(t))v] +(1(8),73(0))y, + (y{’<t),yé’(t))v;}dt-
(2.2)

This becomes a Hilbert space with norm
17 Iwom) = (191320 vy + 19 Wy + 19 W2 ry) 5 (2:3)

where ' = d/dt and "’ = d?t/dt?.

From now on, we set V =V, = H& (Q) and H = L2(Q), where Q is a bounded
open set in R™ with smooth boundary I', and let Q = Qx (0,T). We will give an
exact description of damped second-order evolution equations. We consider
the bilinear forms defined by

artip,y) = > JQﬂif(t’”a(gff) algg)
i J

i,j=1

dx

+J ao(t,x)p(x)p(x)dx Vo,peV,
¢ (2.4)

ax(tip, ) = 3 | byt 23 S
3 J

ij=1

dx

+jQ bo(t,X)b(xX)p(x)dx VeV,

where a;;, b;;, ag, and by are the functions satisfying the following properties:
(i) aij=aj; and b;; = bj;,

(i) aij, bij,ao0,bo € CL([0,TT;L=(LQ)),

(lll) Zgj:l ai|j(t,x)§i§1 > CI(E% + oo +§121), Cc1 > 0, Ei (S R,

(iv) z?jzl bi,j(t,X)EiEj > Cz(gf 4o +§%), c2>0, & eER.
Using the above properties, we can show the coercivity condition of a; and a».
Indeed, by (i) and (ii), there exists K > 0 such that |ao(t,x)| < K a.e., x € Q,
and for all ¢ € [0, T]. The coercivity condition of a; follows from

2
dx—KJ [p(x) |2dx
Q

. < 0 (x)
a1 (t;h,p) = ¢ EJQ ‘ ox;

(2.5)
= C1||¢H${é(ﬂ) _K|¢|E2(Q)'

Similarly, we can show the coercivity condition of a,. Then we can define the
operator A;(t) € £(V;, V) for t € [0,T] deduced by the relation

al(t,d):(l/) = <Ai(t)¢:w>vi’,vi vd)!w € Vi! i: 112 (26)
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Let yy € Hé(Q) and y; € L?(Q). Then by Nakagiri and Ha [3], there exists a
solution y € W(0,T) of

0%y (u;t) 0y (u;t) Yy
B o + A1 () y(u;t) =u in (0,T), 2.7)

y(u;0)=y0, ¥ (uw;00=23; inQ, y=0 onZ.

+A2(t)

3. Duality. We choose a control variable space U = L?(Q). Let u € Uyq =
{fulu=0ae.in Q} CcU and y satisfying (2.7). we consider a cost functional
given by

1 (T 1 (7T
J(y,u) = EJO | v (u) —zd{zdt+ EL (Nu,u)dt. (3.1)

For our purpose, we consider the following systems:

Yt + A () y () + A Dy (u;t) =u inQ,
yu;0) =y, ¥ (u;0)=y; inQ, (3.2)
u>=0 ae.in@Q, y(0)=0, »(0)=0, y=0 ongZ,

P (w;t) = A2 (D) p" (u;t) + (A1 (£) = AL (D) p(u;t) =y —z4 inQ,
p=0 on%, pwT)=0, p'(u;T)=0 (3.3)
p+Nu=0 inQ, p(0)=0, p'(0)=0,

u(p+Nu) =0,

3.4
p(0)y(0)=0 inQ, »(0)p(0)=0, »y(0)p'(0)=0. (34

THEOREM 3.1. Let J = (1/2)fy |y — z4l2dt + (1/2) [y (Nu,u)dt and K =
—(1/2)f0T ly|2dt + (1/2)f0T |zql2dt — (1/2)f0T(Nu,u)dt. Assume that g, Uo,
and py satisfy (3.2), (3.3), and (3.4), respectively, v and u in J satisfy (3.2), and
v and u in K satisfy (3.3). Then

inf J = J(0,u0) = K(»0,u0) = supK. (3.5)
3.2 3.3)

PROOF. (i) We begin by showing that J = K at (o, uo,Po)-

J (>0, u0) = J (o, u0) - JOT (uo, po)dt — JOT (uo,Nuo)dt

T

T
=J (0, uo) —J (o +A2(6) vy + AL () Yo, po)dt — L (uo,Nuo)dt

0
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T

= T (o,u0) =~ [ (0,2~ A (010 = A2 (OOph + Ar () po)

T
*J (uo,Nuo)dt
0

T

T
=J (>0, 1o) —J (yO,yO_Zd)dt_JO (uo,Nug)dt.

0
(3.6)

(ii) To show inf2J = J(¥o,up), we must check that J(y,u) = J(yo,uo)
under (3.2) for (yv,u,p) and under (3.2), (3.3), and (3.4) for (yo,uo,po). Now,
we have

T T

(J’o—Zd,y—yo)dt+J (Nuo,u—ug)dt

T W -y (3o, u0) = | 0

0

T
=L (P4 = As ()Pl + (A1 (E) = A5 () po, ¥ — vo)dt
T
+J (Nuog,u—ug)dt
0

T
=J (po,y" +A2(H)y" + A1 () y)dt
0 3.7)

T
—L (Po, vy +A2() ¥y + A1 (t)yo)dt

T
+J (Nuog,u—1ug)dt
0

T T
= J (po,u—uo)dt+J (Nuo,u—ug)dt
0 0

> 0.

(iii) We claim that K(y,u) < K(y,uo) under (3.3) for (y,u,p):

J (o, u0) =J (v, u)

T

T
> J (y—zd,y—yo)dt+J (Nu,u—ugp)dt
0 0

T

T
= JO (p" —Ax(t)p' + (Al(t)—A;(t))n,yo—y)dwjo (Nu,uo—u)dt

T
+J0 (8! + A (£) Y+ A1 (8) Vo — o, o — p)dt

T T T
=7J (y*Zd;y)dt*J( (Nu,u)dt+J (70,70 —za)dt
0 0 0

T T T
+J (Nuo,uo)dt+J (Nu+p,uo)dt—J (uo,po+Nug)dt
0 0 0
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T T
> —J (y—zd,y)dt—J (Nu,u)dt
0 0

T

T
+ Jo (70, v0 —za)dt + Jo (Nug,up)dt.

Therefore
K(y0,u0) = K(y,u).

This completes the proof.

1707

(3.8)

(3.9)

|

Now, we observe the terminal value of y(u;t). Since the observation z(u)

is given by y (u;T), the cost function is given as

1 1 (T
J(y,u) = > |v(T) —zd|2+ 5 JO (Nu,u)dt.

We introduce the following systems:

Y () + A ()Y (wt) + A () y(u;t) =u inQ,
yu;0) =yo, ¥ (u;0)=y1 inQ,

u>=0 aeinQ, y(0)=0, »'(0)=0, y=0 onZ,

p’(u;t) — A ()p' (u;t) + (A1 (1) — A5 (D)) p(u;t) =0 in Q,

p=0 on2
p(w;T)=0, p'(w;T)=y(T)-2za4
-p+Nu=0 inQ, p(0)=0, p'(0)=0,

u(-p+Nu) =0,

p0)y(0)=0 inQ, »(0)p0)=0, »(0)p'(0)=0.

(3.10)

(3.11)

(3.12)

(3.13)

THEOREM 3.2. Let J = (1/2)|y(T) — z4l? + (1/2) [ (Nu,u)dt and K =
—(1/2)|y(T)|%2 + (1/2)|zq] — (1/2)f0T(Nu,u)dt. Assume that vy, ug, and po
satisfy (3.11), (3.12), and (3.13), respectively, vy and u in J satisfy (3.11), and 'y

and u in K satisfy (3.12). Then

inf J = J(y0,u0) = K()0,u0) = supK.
(3.11) 3.12)

(3.14)
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PROOF. (i) We now prove that J(yo,uo) = K(y0,Uo):

T

T
J (>0, u0) =J(J’o,uo)+J’ (Po:uo)dt—JO (Nuo,uo)dt

0

T T
=J(3’o,uo)+J0 (3’6’+A2(t)y6+A1(t)yo,lﬂo)dt—j0 (Nuo,uo)dt
1 1 T
:5|y0(T)—Zd)2—(yo(T)—Zd,yo(T))—§J (Nuog,ug)dt
0

1 2 1 > 1 (T
:_§|yO(T)| +§|Zd| —E o (N’u(),’u())dt

= K(y0,u0).
(3.15)

(ii) We show that J(y,u) > J(yo,up) under (3.11) for (y,u,p) and under
(3.11), (3.12), and (3.13) for (yo,uo,po):

T
J(v,u)=J(vo—uo) = (J/O(T)—Zd,y(T)—yo(T))+J0 (Nuo,u—up)dt
T
= (3’0(T)—zd,y(”[)—yo(T))+J0 (Nuo,u —up)dt
T
- [ - anop (0 - A5 0)p, - o)t
= (%0(T) —za4,¥(T) = yo(T))
T
+L (Nug,u—uo)dt — (¥o(T) —za,y(T) = yo(T))

T
- JO (po,y" =i +Ax(t)y —Ax ()Y}

+A(H)y —AL(t)yo)dt

T
= J (=po+Nug,u—ug)dt
0

> 0.
(3.16)

(iii) We have to check that K(y,u) < K(yo,uo) under (3.12) for (yv,u,p):
T
J(vo,u0) =J (v, u) = (y(T)—zd,yo(if)—y(T))+I0 (Nu,uo—u)dt
T
- (J/(T)de,yo(T)*y(T))+JO (N, o —w)dt

T
- JO (v +A2(B)yo+ A1 (t) Yo —uo, po—p)dt
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T
= —(9(T) - za, ¥(T)) —jo (Nu, ) + (3o (T) — za, vo(T))dt
T T
+J (Nuo,uo)dtJrJ (=p+Nu,ug)dt
0 0
T
+JO (po—Nuo,ug)dt
T

> —(y(T) —za,¥(T)) _Jo (Nu,u)dt

T
+(yo<T>—zd,yo<T>)+J0 (Ntto, o) L.

(3.17)

This shows that
K (¥0,u0) = K(y,u). (3.18)
Therefore, Theorem 3.2 is proved. O

When the observation z(u) is given by z(u) = y’(u), the cost function is
defined as

, 1T, 1 (T
JOy'hu) = EJO |y (u)—zd|2dt+§JO (Nu,u)dt. (3.19)

We will consider the following systems:

Y () + A )y (wt) + A (D) y(ust) =u in (0,T),
yu;0) =y0, Y (u;0)=y1 inQ, (3.20)
u=0 ae.in@Q, y(0)=0, »(0)=0, y=0 onZ,

T
p”(u;t)—Az(t)p’(u;t)+A1(t)v(u;t)+L Al(o)p(u;o)do
=y'(u;t)-z4 inQ, (3.21)
p=0 on% pwT)=0, p'(w;T)=0,
-p'+Nu=0 inQ, p(0)=0, p'(0)=0,

u(-p+Nu)=0

p(0)y(0) =0, ¥ (0)p(0)=0, »(0)p'(0)=0, (3.22)

T
¥ (0) L A (o)p(o)do =0 inQ.

THEOREM 3.3. Let J = (1/2) [y |y’ — zq|2dt + [y (1/2)(Nu,u)dt and K =
—(1/2) 3 1y 12dt + (1/2) [y |za|2dt — (1/2) [ (Nu,u)dt. Assume that Vo, Uo,
and py satisfy (3.20), (3.21), and (3.22), respectively, v and u in J satisfy (3.20),
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and v and u in K satisfy (3.21). Then

inf J =J(v),u0) = K(¥),uo) = supK. (3.23)
(3.20) (3.21)

PROOF. (i) First, we claim that J (), uo) = K(},Uo):

T

T
J (70, u0) = J (9, uo) +J (vé,uo)dt—JO (Nuo,uo)dt

0

T

T
= J (¥, 1t0) +f Py, Vi +A2(t)yé+A1(t)yo)dt—L (Nto, 1) dt

0

T
= pa) + [} (=P + AxOp - 0po
T T
_J A’((r)]z)(U)dU,y’)dt—J0 (Nuog,up)dt
t

T T
= It0) - | (- za)dt - | (Nuo,uo)dt

1 (" , 1 (7 1 (T
=75 |y(,)|zdt+_J |Zd|2dt——J (NUO,uo)dt.
2 Jo 2 Jo 2 Jo

(3.24)

(i) Second, we must show that inf J = J (1§, uo):

T

T
J'uw) —J(yg,uo) = JO (vo—za,’ —yé)dt+J0 (Nuo,u—up)dt

T
=JO (Pél—Az(t)P{)-FAl(t)lﬂo
T
+L Ai(a)po(o)da,y’—yé)dt

T
+J (Nuog,u—up)dt
0

T
= [ P )~ A0 -3 - A (0 (- 30))de

T
+J (Nuo,u—up)dt
0

T
=J (—pi+Nug,u—up)dt
0

> 0.
(3.25)
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(iii) Finally, we check that supK = K (¥, uo):

J (o, u0) =J (', u)
T

T
2 J (' —zd,yé,y’)dt+J (Nu,uo—u)dt
0 0

0

T

0 0

T

T
= —L (y’—zd,y’)dt+J (p', -y —A2(H) vy — AL (t)yo)dt

0

0

T T T
+J (Nu,uo)dt—J (Nu,u)dt+f (uo,p’)dt
0 0 0

T

o], eyt [ o)t

T T T
= —JO (y'—zd,y’)dt—JO (Nu,u)dt+J0 (76, 6 —za)dt
T T
| Nwuo)de | (uopp)de
0 0

T T T
—J (uo,v’)dt+J (Nuo,uo)dt—J (Nuo,uo)dt
0 0 0

T T
Z—J (y'—Zd,y')dt—J (Nu,u)dt
0 0

T

T
+j0 (yé—zd,yé)dﬂjo (Ntto, o) dt.

This implies that
K(yg,uo) = K(y,u).

So, we claimed Theorem 3.3.

T T
= J (p” —A(t)p' + A (t)p +L Aj (o-)p(a)da,yé—y’)dt

T T
—J (3’6, —po +A2()po— A1 (t)po - L A’(U)po(o)dcr)dt

1711

T
—J (Vo +A2() vy +AL(t)yo —uo,v(’)—p’)dt+J (Nu,uo—u)dt

(3.26)

(3.27)

O

In this case, we observe the terminal value ' (u;T). Since the observation

z(u) is given by y'(u;T), the cost functional is given as

J'u) = 1|y'(u'T)—zgllerlJT(Nu w)dt
, 5 ; > o : .

(3.28)
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We introduce the following systems:

Y () + A )y (ust) + A (D y(u;t) =u inQ,
yw;0) =y, ¥ (w;0)=y1 inQ, (3.29)
u=0 ae.inQ, »(0)=0, »'(0)=0 inQ, y=0 onZ,

p"(u;t) —Ax () p' (u;t) + (A1 () — A5 (t))p(u;t) =0 inQ,

p=0 onZ

3.30
p(u;T) =y (T)—z4, P (u;T)=Ax(T)y'(T)—2z4, (3.30)
p+Nu=0 inQ,
p(0)=0, p'(0)=0 inQ,
u(p+Nu) =0, (3.31)

p(0)y(0)=0, »'(0)p(0)=0, ¥(0)p'(0)=0 inQ.

THEOREM 3.4. Let J = (1/2)|y'(T) — zal?> + (1/2) J, (Nu,u)dt and K =
—(1/2) [y (T2 + (1/2)|z4] - (1/2)f0T(Nu,u)dt. Assume that vy, ug, and pg
satisfy (3.29), (3.30), and (3.31), respectively, vy and u in J satisfy (3.29), and y
and u in K satisfy (3.30). Then

inf J = J(v),u0) = K(¥),uo) = supK. (3.32)
(3.29) (3.30)

PROOF. (i) First, we show that J = K at ({,uo,Po):

T T
J (0, u0) =J(J’6=uo)—{0 (uo,Po)dt—JO (uo,Nug)dt

T

:J(yé,uo)—J

T
. (V) + Az (1) v+ A1 (t) vo, po)dt — L (Nuo,uo)dt

1 1 (T , ,
- §|y(;<T>—zdl2+§jO (N, wo)dt — (v§(T) - 24, y(T))

T
*J (Nuo,uo)dt
0

:—l|y’(T)|2+l|z Z—EIT(NM uo)dt
5 170 >lzal" =5 0,Uo

=K (¥4, u0).
(3.33)
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(ii) Second, we check that J(y',u) = J({,uo):
J'w) = J (75, u0)
T
> (¥)(T) —zq,y"(T) = ¥{(T)) +J0 (Nuo,u—uo)dt

T
= (¥§(T) = za, ' (T) - 4(T)) +j0 (Nuo,u — o) dt

T
+J0 (p" — A2 ()P + (AL () — AY(D)) p, v — yo)di
T (3.34)
:JO (0,3 =V +A2(D)y' — As(D) v+ AL (D) — A1 () vo)di

T
+J (Nuo,u—up)dt
0

= JOT(p +Nug,u —ug)dt

> 0.
(iii) Finally, we claim that K(y',u) < K(y},uo):
J(vo,u0) =J (', u)

T

> (yé(T)—zd,y’(T)—y(;<T>)+j0 (N1to, 1t — o) di
T

- (yé(T)—zd,y'm—ya(T))+f0 (Nto,u — o) dt

T
+J0 (Vo + A2 (t) vy + AL (t) yo —Uo, po— p)dt

T , , (3.35)
= (1) = 24,y (1)) = | (Nuwdt + (75(T) = 24,5 (1)
T T T
+L (Nuo,uo)dt+J0 (Nquyo,uo)dt—J0 (po+Nug,up)dt
T
> —(y’(il‘)—zd,y’(T))—J0 (Nu,w)dt + (y{(T) —zq,y'(T))
T
+JO (Nuo,uo)dt.
This implies that
K(yg,uo) = K(y',u). (3.36)

This completes the proof. ]
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