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The nonlinear boundary-value problem for the diffusion equation, which models
gas interaction with solids, is considered. The model includes diffusion and the
sorption/desorption processes on the surface, which leads to dynamical nonlin-
ear boundary conditions. The boundary-value problem is reduced to an integro-
differential equation of a special kind; existence and uniqueness of the classi-
cal (differentiable) solution theorems are proved. The results of numerical exper-
iments are presented.
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1. Introduction. The hydrogen presence in widely used construction mate-
rials often leads to the worsening of their operational state. Due to the im-
portance of ecological safety, this must be taken into consideration when de-
veloping chemical industry and power engineering objects. Interest in hydro-
gen power engineering has grown in the recent time as it is ecologically safe.
Thus transport and storage problems appear. All that has defined a growing
interest to hydrogen interaction with different solid materials [1, 3, 4, 5]. Seri-
ous experimental and theoretical elaborations in this area are hardly possible
without mathematical modeling. Numerical experiments allow to choose most
adequate models with respect to experimental data, help to improve the un-
derstanding of different mechanisms and stages of the process, reduce needs
for costly experiments, and estimate some parameters.

In this paper, a widely used experimental method of thermodesorption spec-
trometry will be considered (TDS) [4, 5]. Here is its brief description: a plate
from studied material is placed under hydrogen pressure. A plate is electrically
heated to increase the rates of adsorbtion/desorbtion and diffusion. When bal-
ance concentration is obtained, the plate is cooled (turning electric heating off).
The rates of mentioned processes abruptly decrease. Keeping vacuum around a
plate, it is slowly heated again. The hydrogen desorption flux from the surface
is estimated using mass spectrometer.

2. Mathematical model. Let c(t,x) be the concentration of dissolved
(atomic) hydrogen inside the plate (t > 0, x € [0,£]). Initial data is determined
by the fact that the plate had been saturated with the gas c(0,x) = ¢y = const.
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In the area Qy, = (0,t,) x (0,¥), concentration satisfies the diffusion equation
ci(t,x) = D(T)cxx(t,x). (2.1)

Here, t is the duration of the TDS experiment, £ is the width of the plate,
D is the diffusion coefficient, and T = T (t) represents the temperature. Limit
values of T are known: T(t) € [T, T*],0< T~ < T*, and T(-) € CL[0,t«].
Linear heating is often used (in the area [T~, T*]). For hydrogen at usual range
of pressure, concentration, and temperature, the dependence of all parameters
on T is well described by Arrhenius rule: D(T) = Dyoexp{—Ep/[RT]}. Later in
this paper D(t) = D(T(t)).

We describe the boundary conditions. Considering physical and chemical
processes on the surface, the following dynamical conditions will be used [4]:

do,e(t) = pus(T)p(t) =b(T)qg o (t) £ D(T)cx (t,X) | x=0,- (2.2)

This is a differential equation for surface concentrations qo(t), q¢(t), on both
faces of the plate: x = 0, x = £. Hydrogen atoms form molecules and des-
orb from the surface. The density of desorption flux for hydrogen depends
quadratically on the concentration of atoms on the face

Joa(®) = (03 (0), b(6) = B(T(0), b(t) = boexp | - [Rfﬁ} 23)

Pressure p(t) of gas hydrogen makes some amount of gas to return to the
surface—it defines the first term in the right part of (2.2) (u, s(T) are the
physical constants). The last term in (2.2) defines the diffusion flux of hydrogen
atoms from the deep to the surface. The experiment is symmetrical

al)=qot)=qet), JWO)=Jo(t)=Jpt), c(t,x)=c(t,¥-x), xec[0,¥].
(2.4)

The pressure is measured as

t _
p(t) = 6, LJ(r)exp{ (Tgo” ar, 2.5)

constants 6; are defined by technical details of the experimental equipment.
The density of desorption flux can be found from the pressure p(t) for all
t>0,J(t)=((p@)+p(t)/0)/0:.
If the vacuum system is powerful, the hydrogen return to the surface can be
considered negligibly small. As all processes are symmetrical with respect to
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the middle of the plate, later in this paper we consider one equation instead
of (2.2)

a(t) = -b(t)q*(t) +D(t)cx(t,0). (2.6)

The process of hydrogen remissing is considered fast enough, so linear con-
nection between surface and subsurface concentrations can be efficiently used

E
c(t,0) =co(t) =g(t)a(d), g(t)=goeXp{—[RT7‘L(’t)]}- (2.7)

In this paper, the dependence of parameter on temperature is not important.
So the model of TDS experiment looks like

ci(t,x) =D(t)exx (t,x), (t,x) € Qu,,
c(0,x) =¢y, c(t,x)=c(t,¥-x), xel[0,¥], (2.8)
c(t,0) = g(t)q(?), q(t) = =b(t)q*(t) + D(t)cx (t,0).

The main specificity of this boundary-value problem is in nonlinear dynam-
ical boundary conditions.

More general problem from the viewpoint of generalized solutions has been
studied in [8]. Some algorithms of parametric identification of hydrogen pene-
tration models for stratified materials can be found in [3, 9, 10]. In this paper,
the existence of classical solution of the given problem will be studied.

To simplify mathematical operations on the problem, we exclude the vari-
able g and consider new time t’ = jot D(1)dT. New time will be represented by
the same letter t. After these transforms, the problem will be

c(t,x) = cxx(t,x), (t,x)€Qy,, (2.9)
c(0,x) =y = const, x €[0,¥], (2.10)
Co(t) = —oq (t)c3(t) + o (t)co(t) +g(t)ex(t,0),
b g (2.11)
co(t) = c(t,0), oq(t):Df, x(t) ==,
g g
c(t,x)=c(t,¥-x), xe€[0,¥]. (2.12)

3. Reducing the problem to an integrodifferential equation. Let C!? (Qt* )
be a space of functions on at* = [0,t+]x[0,€], which has continuous partial
derivatives 0%*#/0t*0x# (here «, B are nonnegative integers, 2« + 8 < 2) on
Q:, and these derivatives can be continuously extended to at* [7].

DEFINITION 3.1. Classical solution of the boundary-value problem (2.9),
(2.10), (2.11), and (2.12) is a function c(t,x) € CLZ(@*), which is symmet-
rical (2.12) and satisfies the diffusion equation (2.9) in Q;, with initial data
(2.10) and dynamical boundary condition (2.11).
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Let A(t) = co(t) = c(t,0) and assume that classical solution exists. We con-
sider a function c®(t,x) = c(t,x) — A(t). Obviously, c°(t,0) = c°(t,¥) = 0,
c2(t,0) = —c2(t,¥). It can be extended oddly to [—#,¢] and thus periodically
on R!. Then, c°(t,-) € C}(R!) and on the segment of interest [0,] it can be
expanded to uniformly converging Fourier series by sine. Thus, it is possible
to try to find the solution in Q;, as

c(t,x) = A(t) + ZKn(t)sm($). (3.1)
n=1

Formally substitution c(t,x) to the diffusion equation (2.9) gives

i (h(tﬂ%ﬁ)sm(%) = —A(). (3.2)
n=1

Making a scalar product in L»[0,#] of (3.2) and sin(rtnx/f), we obtain the
system of differential equations for K, (t)

Kn(O)?n? _ 4AQ1)

Ko (1) + =5 n=2k-1,
Ky (t)1r2n? 59
Kn(t)+ =0 =0, n=2k k=1,2,3,....

Initial conditions come from fixing t = 0 in (3.1), and from initial data (2.10)
we see that K, (0) =0, K, (t) =0 if n = 2k, and for n = 2k—1

Kn(t) = —% J;A(T)sn(t—T)dT, Enll) = exp{— (%)21‘}. (3.4)

Later in this paper, the symbol > will be used as a sum by odd natural n. Ob-
viously, c(t,x) = c¢(t,£ —x) and only boundary condition (2.11) is unsatisfied
(formally yet). After substituting (3.1) into (2.11), assuming that series can be
differentiated term by term, we obtain the main equation for A(t)

st :
A() = o (DA (D) + 0 (DA — o (D) S L A(T)en(t-T)dr,

_b _9 _49
o (t) = Dg’ o (t) = 9’ o3 (t) = 7 (3.5)
2 ’
sn(t):exp{—<n7;n> t}, z =
n=1,3,5

DEFINITION 3.2. The solution of (3.5) on segment I = [0,t"] is a function
A(t) € C*(I), which satisfies (3.5) for all t € I as well as initial condition A(0) =
Co. The series in the right part converge for all t € I, derivatives on the ends of
I are left or right.



NONLINEAR DYNAMICAL BOUNDARY-VALUE PROBLEM 1451

Specificity of this equation is in the term >’ fot. If, instead of it, there was
a function of time only, not depending on A, it would be a Riccati equation,
which is well studied in the theory of differential equations. The derivative A
is present in both parts of the equation. It is impossible to use integration by
parts (to remove A) for one of the series will become divergent. Here appears
an analogy with functional differential equations of neutral type [6]. Due to
divergence, it is impossible to interchange an integral and a sum in the right
part of (3.5). All this makes the study of (3.5) an interesting mathematical
problem.

It is important to note that if there exists a solution on I, then series

7 t .
A(T)ep(t—T)dT (3.6)
X,

converges on I uniformly and absolutely as |A| < L (is limited),

2

t t
JA(T)En(t—T)dT SLJ en(t—T)dT < (3.7)
0 0

m2n2’

This numerical series converges. The value of the sum is estimated by L£?/8.

The initial boundary-value problem is reduced to this integrodifferential
equation (3.5) in the following sense. Assume that the solution A(t) exists
on I =[0,t*]. We define the following boundary-value problems:

ci(t,x) = cxx (t,%), ¢(0,x) = Co, c(t,0) =c(t, ) = A(t). (3.8)

Such problems are well studied in [7]. The symmetry of initial and boundary
conditions implies that c(t,x) = ¢(t,¥ — x). Classical solution which exists is
unique and can be found as a convergent in C'? trigonometric series. Thus a
formal series (3.1), built earlier, will present a classical solution and all opera-
tions at it were legal.

4. Obtaining solution A(t). Equation (3.5) differs from Riccati equation by
the fact that instead of differential operator d/dt the integrodifferential one is
present, containing a series >.'. So we consider a functional differential prob-
lemonI=1[0,t"]

,(t .
A +as () JOAmsn(t—T)dT - f(b),

A(0) = ¢y, 0(3=47g€C1(I), fec).

(4.1)

Let B(t) = A(t) and define an iterative process

Lt
Bo(t) =0 (Ao(D) = é), Bm(t)ﬂxg(t)zjOBkw)en(t—T)dT:f(t).
4.2)
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In case By is continuous, |Bx| < Ly on I and >’ converges absolutely and uni-
formly (being majorized by a convergent series as explained above). Due to
By,B; = f € C(I), one can obtain that a sequence Bk (t) on I is defined cor-
rectly and By € C(I).
We now study the convergence. Consider a series By + (B; —Bg) + (B2 —B1) +
- which is equal to the sequence By. Later, we will use a norm C(I): || - || =
Il - llc)- The following estimations are true:

[1Boll =0, [|B1=Bol[ = 1,

, it
|B2(t) =By (t) | = |ex3(t) D Jof(T)en(t—T)dT <|les][ - ILFII - ¥ (D),

where

Y(t) = ZL: ent-T)dr =3 % [1 —eXp{— (%)Zt}]. (4.4)

A series for ¥ on I is majorized by 3" £2/(1tn)2. A function ¥ (t) has the follow-
ing properties: ¥ (0) = 0, ¥(¢) > Owhen t > 0, ¥ (t) grows on ¢, and ¥ (t) < £2/8.
Each term is continuous, so ¥ € C(I) and ||¥| =¥ (t).

We have obtained an estimation ||B, — B < [[as]| - ||.fll - Y(t*). Now, only
local solution will be constructed since its continuation is a subject of a special
study. Let t* be such that ||x3||¥(t*) <7 < 1. Then,

|IB2 = B[ < 7ILf1l,

, ot
1Bs— B < | s (1) S JO | Bo(T) — By (T) | e (t —T)ddT @5)

<|les||-[|B2 = Bi||- ¥ (t*) <7|[Bo = Bi|| < 7|l f1l.

Continuing this process, one obtains By = B € C(I) and

1
IBIl <||Bol|+[|By =Bol|+--- < pllfll, p= 17 (4.6)

Estimation (4.6) implies continuous dependence B = A of f.

THEOREM 4.1. For sufficiently small t* (||«s] - ¥ (t*) < 1), the unique solu-
tion A € CY(I) of (4.1) exists for all f € C(I).

The existence is proved, A(t) = ¢y + f(fB(T)dT. Suppose that there exists
one more solution F € C1(I). Using linearity of (4.1), from (4.6), one obtains
IB—F| = 0, which means that A = F on I. If F exists on a smaller segment
J =10,t°], then t* is reduced to t° (¥ (¢) — 0 monotonically when t — 0). Then,
A =F on J and a solution A can be considered as continuation of F from J
to I.
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REMARK 4.2. The condition ||x3]| - ¥ (t*) < 1 is true without any limitations
ont*if ||g|l < 2/¢, for a3 = 4g /L, ¥ < £?/8. These limitations are tributes to
the method of contractive mappings.

THEOREM 4.3. The unique solution A € C'(I) of (4.1) with continuous right
part f exists on any segment I = [0,t*], the following estimation is true: || A|| <

RIS

PROOF. As T(t) € [T~,T"], we choose t{ so that the following inequality
holds: [|es |l - ¥ (t;) <7 < 1. The solution will be constructed on I, = [0,t; ] in
accordance with Theorem 4.1. From (4.6), it follows that HAH,1 <(1-r AN,
We consider (4.1) on the next segment I, = [t{,2t; ] with initial data A(t]")

;(t . ~
AD+o(D S L CAMen(-T)dT = F(0),
1

"

F@O) = f—oa®) S enlt) | AMe-ndr.

(4.7)

Noting that
en(t) =en(t—t])en(t]), en(-T)=en(t; —T)en(-t{), &€ (0)=1, (4.8)

and moving the origin to t{, one obtains problem (4.1) with modified right part.
Estimation (4.6) implies that ||A||12 < pllfll1,. We estimate || f|l1, as follows:

+

~ 7 t .
FGIEFGIEREIGIDY en(tftf)sn(tf)ﬁ)1 |A(T) |en(—T)dT
< O] +llesll, - IAlL -¥(t), 0<en(t—tf) <1, tel, &9
AN, < 1A +7 1AL < 1l +7 @ =7) M F .

From here, the following is easily obtained:

1Al < ol Fll, < o (1F I, +7rpllflln)

) (4.10)
= p(1+rp)||f‘lllulz =p ||f||[1u12-

Comparing this result with |\A|\11 < (1 —V)’lllfllh, 0 < r < 1, we have the
following:

. 1
IAlLon < P20 fllhon, P = a1-r" (4.11)
In the same way, one can consider the next segment I3 = [2t],3¢] ]
. ’ t . A
AW+ Y entt) [ Amen-idr = fo0),
! 4.12)

2t

F&r =f0 - et | DA en(-T)dT.
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Using the same technique, the following estimation is obtained:
IAlL oo < (L= 31 Fllnonuts- (4.13)

In this way, the continuous function A(t) on I is constructed. On any segment
with length t{, it satisfies (4.1). The way of construction guarantees that dis-
continuities of A(t) can be only of the one kind and can exist only on the
ends of the segments. But even in this case all terms in > are continuous,
and boundness of |A| on I implies absolute and uniform convergence. Thus
continuity of the second term of (4.1) implies the continuity of the derivative
A, which means that A € C1(I). The uniqueness of the solution follows from
the way of constructing consequently on Iy,I5,.... The estimation is true on
the segment I: |A|| <R| fIl, R = (1-7»)"N, |

Now, remember that in the initial equation (3.5), square function & (t) A2 (¢)
+ oo (t)A(t) is instead of f(t). We consider a new iterative process Ay (t) = ¢o,
By(t) =0,

, t
B+ | Bea(Men(t-Tidr

(4.14)
= —oq (D) AL(E) + o2 (£) Ag (1),
Agi1(t) =60+ f(f Bi.1(T)dT, which is the same with
’ t .
A+ J Ao (Den(t-T)dT
0 (4.15)

= —oq (1) A (L) + oo (£) A ().

The sequences By € C(I) and Ay € C'(I) are defined correctly on any given
segment [0,t*]. The solutions By with given Ay are defined by (4.1) (which is
linear with respect to unknown function By 1)—it follows from Theorems 4.1
and 4.3.

THEOREM 4.4. Whent" is small enough, By, is bounded, that is, the following
estimation holds: ||Bxllc(y < M = const.

PROOF. Let time instant t* be chosen such that both inequalities |3y -
Y(t*) <7r <1 and (4.6) are true. By the way, on the initial stage there is no
need to bound t* due to Theorem 4.3 (||A]| < R|I.fI|). With respect to (4.14),
one obtains (o4 = —0(1(38 + 0 Cp, X5 = Xp — 21 Cp)

[Besall; < pll — cr AR + o Al

r t 2
0(4+d5J Bde—O(l(J Bde)
0 0

2
< o[ lleally + £ o] - 1Bl [+ £ [exal ;- 1Bl 7 ]-

=p (4.16)

I
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Thus, the following estimation is obtained:
IBrsa|] < Bo+ But™||Bill+ Bat *2||Bi||". (4.17)

Note that while t* becomes smaller, constants 8; cannot grow, yet stay positive.
Consider the square function f(x) = B1t*x + B2t+2x?, x = 0. For any con-
dition 0 < x < M, it is possible to take t* < € so small so that 0 < f(x) < yx,
0 <y < 1. For instance, Bit* <y/2 and B»t*2M < y/2.
Let t* be so small so that the following inequalities are true:

losl|-¥(t) <7 <1,  |[Beall < Bo+ylBell, 0<y <1, ||Bell <M. (4.18)

It is important here to note that the inequality for By, is written assuming
that ||Bgl| < M. Constant M, which can be made bigger reducing t*, will be
specified later.

As By = 0, ||B1|l < Bo. Quantity By = pllxsll cannot grow while t* reduces,
but at the same time does not tend to be zero. Let M > B (this can be obtained
using t*). Then,

|[B2|| < Bo+yl[Bi]| < Bo +yBo. 4.19)

If Bo+yBo <M, then it would be possible to continue a simpler estimation

|1B3| < Bo+ yl[B2| < Bo+yBo+y*Bo. (4.20)

Note that if choosing small enough t*, the following is made true (for instance,
ifM=1/t"):

Bo(l+y+y?+--+)=Bo(l—y) ' =M, (4.21)

then all simplified estimations will be true and ||By|| < M for all k > 0. O

REMARK 4.5. The choice t* is constructive. We consider the simplest case.
Choose ¥ < 1 and t* from condition 4g(t*)¥(t*) /¥ < r. Series for ¥(t) con-
verges quickly. Calculate f; with given v, t*, known initial concentration ¢,
and coefficients D, g, and b. Then, for some y € (0,1), by reducing t*, if nec-
essary, we obtain

1
Bu*s%, ﬁzt*g%, M=z By(1-y) " (4.22)

After that, it is possible to come back to old times.

THEOREM 4.6. For a small enough t*, the unique solution A € C*(I) of the
initial functional differential equation (3.5) on a segment I = [0,t"] exists.
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PROOF. The following is obtained from (4.14) using Ay (0) = ¢y, Ax = By:

Lot
Bz () =B (0406 (03 [ (Bea (1) = Bor (1) en(t =)

— oy (0) (A2, () — A% (1)) + o2 (1) (Ags1 (8) — Ag (1)) (4.23)

t t
= {0(5 — X1 JO (Bk+1 —Bk)dT} . JO (Bk+1 —Bk)dT.
Let t* be so small so that from Theorem 4.4
N 1
loll; ¥ (e*) <7 <1, [|Bll; =M= . (4.24)
Using the estimation (4.6) from (4.1),

|[B+2 = Bi+1ll < p{llecs || +2[|ocr [[MET} - ||Brsn — B[t ™ = Bt™|[By+1 — Bl
(4.25)
is obtained. Choose S and obtain the contraction (reducing t*)

||Bk+2_Bk+1H55||Bk+1_BkHy 0<s<1. (4.26)

Then, the well-known method of contracting mappings is used to prove the
existence of unique solution A € C!(I) to (3.5). Its derivative B(t) = A(t) can
be estimated (By = 0): ||B|| < ||B11l/(1 —5). O

5. Numerical results. Difference schemes with fourth-order approximation
(O (h*), where h is the spatial step) are constructed for numerical experiments
with the model. The stability is studied in [2]. The desorption flux curves have
been calculated for different initial data and parameters. The curves are quite
close to those obtained from physical experiments.

Local maximum points of the curve J(t) (density of desorption flux) are of
interest. On Figure 5.1 there are three plots for the values (one after another)
in Table 5.1.

For all plots, the flux is items per cm? per second.

The first maximum appears because the rates of diffusion and desorption
grow together with temperature. Then the decrease of the gas amount in the
plate implies lowering of the curve. Existence of the second maximum (note
that gas interaction with traps is not taken into consideration) is explained
by difference between rates of the processes on surface and in depth. Quick
decrease of the surface concentration g (t) implies big gradient of volume con-
centration c(t,x) near x = 0, which defines a significant diffusion flux towards
the surface. Desorption flux quickly decreases, but later, because of arraying
gas, it increases again, forming the second maximum.
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FIGURE 5.1

TABLE 5.1

Do =5-10"3cm?/s go=100cm™! bo = 0.12 cm?/s T=10K/s
Ep = 20KkJ/mol Eg = 103 kJ/mol Ejp = 84KkJ/mol To = 279K
Do =5-10"3cm?/s go =100cm™! by =0.12cm?/s T=10K/s
Ep = 16kJ/mol Eg =1073kJ/mol Ej, = 85kJ/mol To = 279K
Do =5-10"2cm?/s go =100cm™! bo = 0.12 cm?/s T =10K/s
Ep =20kJ/mol Eg = 103 kJ/mol Ejp = 84kJ/mol To = 279K

Here are some more examples of how the coefficients affect the curve J(t) =
b(t)g?(t). The curves on Figures 5.2, 5.3, 5.4, 5.5, and 5.6 differ by only one pa-
rameter, its values are given up-to-down, left-to-right with respect to the maxi-
mum Ep = 16,19,22; by = 0.3,0.12,0.06; E, = 76,78,90; Dy = 14e-3,5e-3, 1e-3;
and Eg = 2,1, 1e-3. Other parameters are given in Table 5.2.

TABLE 5.2
Do =5-10"3cm?/s go=100cm™! by = 0.12 cm?/s T=10K/s
Ep = 20kJ/mol Eg =1073kJ/mol E}, = 84KkJ/mol To = 279K

The influence of energy of activation of diffusion (it defines the exponential
part of the Arrhenius law) is well seen. The difference is insignificant when
temperatures are low (in the beginning of the experiment), but important for
how gas leaves the plate; when the parameter is low, gas leaves quicker, but
when high, then slower and fluently, and the second maximum appears. The
coefficient D(T(t)) is the most difficult to vary as it appears in the stability
conditions for the difference schemes.
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FIGURE 5.3

Note that the desorption coefficient b nearly does not affect the end of the
experiment. All three curves meet at the same point. Probably, at high tem-
peratures, the exponential part of b = b(T) “eats” any difference. The time of
degassing is nearly the same (=~ 22 s on the upper plot and ~ 20s on the lower).
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Now, we return to the problem of the second maximum of the flux. Illustra-
tions given show that the most important for the second maximum appearance
process is diffusion (thus parameters Dy and Ep).

Consider the area below J(t). Quantity 251, where I = fot* J(oydT, t* > 1,
is the number of hydrogen atoms, passing through both surfaces of the plate
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(each has the area S) during all the experiment. Initial amount of gas is de-
fined by that dissolved in the volume (c(0,x) = ¢p) and atoms on the surfaces
(q(0) = ¢p/g(0)). So, the following is true: I = ¢o/(2€) + ¢o/g(0). Then, it is
obvious that any two curves J(t) with equal parameters go and E; must have
the same area below the curve. With different go and E,; (and other parameters
are equal), the areas will be noticeably different due to different amount of gas
initially kept on the surface. And what is more, even if gy and E, are equal,
parameter g(0) in different experiments on different temperatures T(0) will
be different.

Parameter g also influences the maximum value of the flux. As J(t) =
b(t)q?(t), q(t) = c(t,0)/g(t), so the lower g—the greater number of atoms—
will go out to the surface at the unit time and later desorb. Note that considered
values of g nearly do not influence the last part of the experiment and its finish
time ¢*. But the maximum of J “neatly” responds to E,. This gives an oppor-
tunity to select the parameter E,; only with the maximum value. Here are some
illustrations.

Among the experimental curves, there are some curves with two humps,
even the first is smaller than the second. It means that the second raise of
the flux, conditioned by the delay of the “deep" amount of gas coming to the
surface, is less significant than the first one, conditioned by growing rates of
the processes. Such curves can be also obtained in the numerical experiment
at special parameters values. On Figure 5.7 (parameters are in Table 5.3), there
is an example: curves differ in the energies of activation of diffusion and des-
orption.
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TABLE 5.3
Do=5-10"3cm?/s go =800cm™! by =0.12cm?/s T =15K/s

Ep = 26,30,35k]J/mol Eg =107%kJ/mol E}, = 60,70,90k]J/mol To = 270K

The curves with three humps (also present in the experimental results) are
hardly possible to be explained using only diffusion and surface processes.
Although, such curves were also obtained in the considered model, taking the
traps into consideration. The traps are different defects of the structure of the
material, which can capture hydrogen and later release it, while the tempera-
ture grows. To consider traps, the model must be slightly modified

ce(t,x) =D(T)exx(t,x) —ar (T)e(t,x) +ax(T)z(t,x), (t,x) € Qy,,
ze(t,x) = a1 (T)c(t,x) —ax(T)z(t,x), T=T(t),

c(0,x) =¢y, c(t,x)=c(t,¥-x), xel[0,4],

c(t,0)=g(Da(t),  4(t) =-b(T)q*(t)+D(T)cx(t,0).

(5.1)

Here, a; are the rates of capture (i = 1) and release (i = 2) of hydrogen by
the traps. Their dependence on temperature is described by Arrhenius rule
together with other parameters a;(t) = ajoexp{—Eq;/[RT(t)]}. A function
z(t,x) is the concentration of hydrogen in the traps at the time t in the point
x. Below is an example of how the delay conditioned by the traps makes three
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humps at the desorption flux curve. The common parameters for the three
curves on Figure 5.8 are in Table 5.4, a, = 0.1,0.2,0.5.

TABLE 5.4
Do =5-10"3cm?/s go =800cm™! by = 0.12 cm?/s T=15K/s
Ep = 30kJ/mol Eg =5-10"2kJ/mol E}, = 70kJ/mol To = 230K
a;=10"3s7! Eq =0s7! Eq, =15s7! t=120s

Note that the time interval is taken significantly larger than that in the ex-
periments without traps as, because of the delay conditioned by the traps, it
takes more time for hydrogen to desorb. One more point to note is that at low
temperatures the difference in the trapping rates is insignificant, yet at high
temperatures even a small difference completely changes a curve.

Thus, numerical experiments corroborate the adequacy of the model.
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