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A nonvariational generation of a min-max principle by A. Lazer is made. And it is
used to prove a new existence results for a nonconservative systems of ordinary
differential equations with resonance.
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1. Introduction and lemmas. Let X and Y be two subspaces of areal Hilbert
space H such that H = X@®Y. Let f: H — R be of class C? and denote by V.f
and V2 f the gradient and the Hessian of f, respectively. In 1975, Lazer et al.
[3] under the following conditions:

(V2f(u)h,h) < —my||h]?, m; >0, VheX, VuecH;

1.1
(V2f(u)k, k) =mo|k|?, m,>0, VkeY, VueH (1.1)

proved that f has a unique critical point, that is, there exists a unique vy € H
such that V f(vy) = 0. Moreover, this critical point is characterized by the
equality

f(vo) = maxmin f(x + ). (1.2)
xeX yey
In [5], with the following conditions:
(V2f(x+y)h,h) < =B(lIxIl)IIkl?, J B(s)ds =0, Vx,heX, VyeY;
1

(V2f(x+y)k, k) = (Il vIDIIkII?, Lw x(s)ds =0, VxeX,Vykey,
(1.3)

where «(s) and S(s) are two continuous nonincreasing functions from [0, o)
to (0,00), it is proved that f has a unique critical point vy such that f(vg) =
maXyex Minyey f(x + ). These results were generalized in [6] and especially
for a nonselfadjoint extension of the results of Lazer. This extension was ap-
plied in [6] to prove that if the following conditions hold:

N2 <yi <y, <(N+1)?, yI<V?Gu) <y-l, (1.4)
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where N is a nonnegative integer and I is an n X n matrix, then the following
differential equations system has a unique 2r-periodic solution:

u’' )+ AU (t) +VG(u) =e(t), (1.5)

where A is a constant symmetric matrix. System (1.5) is included in the follow-
ing nonconservative system (1.6), and assume the following:

u” () + AU (t) +VG(u,t) =e(t). (1.6)

With the use of a nonvariational version of a max-min principle inspired by
[5, 6], in Section 2 we generalize these unique existence results of system (1.6)
to a more general case. To be more precise, we apply a min-max lemma to
the periodic boundary value problem of the nonconservative system (1.6) and
assume that the following conditions hold:

B +a(llull)I < V2G(u,t) < B, — B(llul),

+oo (1.7)
L min{x(s),B(s)}ds = +o,

where u € R", By and B; are two real symmetric matrices, and the eigenvalues
of By and B; are Ni2 and (N;+1)%,i=1,...,n, respectively; here, N;,i=1,...,n
are nonnegative integers and «(s) and S(s) are two positive nonincreasing
functions for s € [0, ).

In Section 3, we show with some examples that our main results extend the
results known so far.

We firstly employ the following lemma from [9].

LEMMA 1.1 (see [9]). Assume that H is a Hilbert space. Let T € C'(H,H),
T’ (u) € Isom(H;H), for allu € H. Then, T is a global diffeomorphism onto H
if there exists a continuous map w : R, — R.\{0} such that

ods I
L w(s)_+ ) T (w) ] < w(llull). (1.8)

With this lemma, we can prove the following lemma.

LEMMA 1.2 (see [4]). Let X and Y be two closed subspaces of a real Hilbert
space H, and H = X® Y. Suppose that T : H — H is a C'-mapping. If there exist
two continuous functions «:[0,0) — (0,00) and B:[0,00) — (0,) such that

(T (w)x,x) < —oc(llull) llx?,

(T'(w)y,») = Bllul)IyII?,
(T"(w)x,v) = (x, T (u)y) (1.10)

(1.9
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for arbitraryu € H,x € X, y € Y, and
+ 00
J min{x(s),B(s)}ds = +o, (1.11)
1

then T is a diffeomorphism from H onto H.
The following lemma is required in the proof of Theorem 2.2.

LEMMA 1.3 (see [2]). Let H be a vector space such that for subspaces Y and
Z,H=ZeaY.If Z is finite dimensional and X is a subspace of H such that
XNnY ={0} and dimension X = dimensionZ, then H=XoY.

2. Unique existence. Assume that G(u,t) is continuous for (u,t) € R" x
[0,27r] and twice continuously differiable about 1. Denote by VG(u,t) and
V2G(u,t) the gradient and the Hessian of G(u,t), respectively. We will inves-
tigate the unique existence of periodic solutions for system (1.6).

Firstly, we introduce the following definition.

DEFINITION 2.1. The real symmetric matrix A is called admissible with two
real symmetric matrices By and B; if there exist orthogonal matrices P, and P,
such that P] B, P, P! B,P,, and P{ AP, are simultaneously diagonal matrices.

THEOREM 2.2. If conditions (1.7) hold for allt € [0,271], allu € R", and for A
is admissible with the matrices B, and B;, then there exists a unique 21t -periodic
solution to system (1.6).

PROOF. Because A is admissible with the matrices B, and B, and conditions
(1.7) hold for all t € [0,27r] and all u € R™, we can get orthogonal matrices
Py = (ay,az,...,an), P> = (b1,ba,...,by), PFB P, = diag(N?,...,N2), PIB,P, =
diag((Ny +1)2,...,(N, +1)?), and P{ AP, = diag(y1,y2,...,¥n). Clearly, a; and
b; are the eigenvectors of By and By, respectively, corresponding to the eigen-
values N7 and (N; +1)?, which satisfy

aiTaj:binj:(Sij, i,j:1,2,...,1’l, (2.1)
where 8;; =0, 1 # j; 6;j =1, i = j. Define

V={vt)=(v1(t),...,vn(0)" [v:0) =v;(2m), i =0,1,...,1;

(2.2)
v (t) absolutely continuous and v’ (t) € L?[0, 2]},

and it is easy to see that V is a Hilbert space with the following inner product:

21
(u,v) :Jo [wWT)v' @) +ul (v (t)]dt. (2.3)
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Denote by || - ||y the norm induced by this inner product, and define subspaces
of V as follows:

X = {x(t)

{y(t)—Zgi(t)bilgi(t)— > (mmcosmtwimsinmt)}; (2.4)
i=1

m=N;+1

Il
M=

Ni
fiai | fi(t) =cio+ Z (cim cosmt +dip sinmt)};

1 m=1

Y

n N
7= <|z(t) = Zhi(t)bi | hi(t) = pio+ Z (pimcosmt+qimsinmt)]»,

i=1 m=1

where N, i = 1,...,n are as in (1.7) and ¢im, dim, Pim, and g, are constants.
Obviously, V = Ze Y. Using the Riesz representation theorem, define a map-
ping T:V — V by

21

(T(u),v):JO [WTv' @) —vT (AW () —vT()VG(u(t),t)]dt  (2.5)

for arbitrary v € V. We observe that T is defined implicitly. From (2.5) and the
fact that G is C?, it can be proved that T is a C!'-mapping and that

21
(T"(w)w,v) = L [wTv' () —vT () Aw'T () —vT () V2G(u,Hw (t)]dt (2.6)

for all v(t),u(t),w(t) € V. Again, from the Riesz representation theorem,
there exists an element d € V satisfying

21
(d,v) = —L vT(t)e(t)dt. (2.7)

It can be proved that u is a 21r-periodic solution to (1.6) if and only if u satisfies
the operator equation

T(u)=d. (2.8)

We will next show that T satisfies the conditions of Lemma 1.2. This will, in
turn, imply that (1.6) has a unique 27r-periodic solution. For any x € X and
u €V, we have that

21
(T (u)x,x) = L [x'T(t)x"(t) —xT(t)Ax' (t) —xT (t)V2G(u, t)x(t)]dt,
(2.9)
where

21 2 N n 21
J x'T(t)x' (t)dt =j > fAdt < ZN%J fEde;
’ ¢ i1 0 (2.10)

21
IO xT(tH)Ax'(t)dt = %xT(t)Ax(t)Ié" =0.
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By (1.7), we have

21
JO xT(t)V2G(u,t)x(t)dt
21 21
ZJ xT(t)le(t)dt+cx(||qu)J xT(t)x(t)dt
0 0
2m n n 21
:JO zZfi(t)fj(t)aiTBlajdt+O((Hu”v)JO xT(t)x(t)dt
i=1j=1
(2.11)

n 21 21
SN[ e adiuly) [ X Ox 0t
i=1 70 0
21 21
Hxl\%=J xT(t)x(t)de XT(Ox (t)dt
0 0

21
< (M2+1)J0 xT(t)x(t)dt,

where M = maxj<j<, {N;}, therefore

allully) o
. 2.12
xR (2.12)

(T"(u)x,x) < —

Similarly, from

n

21 _r2m
|, vy wars 3 ) gtwar,

i=1

27T 21
—f yT(t)sz(u,wy(t)dtz—J T (t)Byy (t)dt (2.13)
0 0

2t

+B(llullv) . ¥y (ty(bdt,
we can get that forall y e Yand allu eV,

21
L 1+ M+ D20 (1) =y (V26 (u, D)y (D)]

=Blulv)[»' Ty (t) +yT )y (t)]}dt
21
- [1+(M+1>2—B<||unv)]jo VT ()Y (b dt

21 21
—JO [1+(M+1>2]yT(t)sz(u,t)y(t)dt—B(Hqu)L yI(t)y(t)dt
n 21
z[1+(M+1)2—B(|Iu|\v)]Z(Ni+1)2JO B (bdt
i=1

21 21
—JO [1+M+1)2]yT () Bay (H)dt + (M +1)?B(llully) JO yit)y(t)dt
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n 21
=[1+M+1)2=B(llully) Z Nl-+1)2J0 g (t)dt

n . n 21
RACER T X Ni+1)2j0 ghde+ M+l Y. [ gt
i=1 i=1

n 21
Blllully) 3 [(M+1)2 = (N;+1)*] ) g2 (t)dt =0,
i=1
(2.14)
and from
21

YDAV (DAt = 23 (O AY (OIFT =0, (2.15)

we can prove that forall y e Yandallu e V,

21
<T’(u)y,y)=f0 Ty () —yT(OAY () -y (1) VG (u,t)y(t)]dt

_Blullv) o
SRS LAl
(2.16)
Obviously, for all x € X and all ) € Y, we have the following:
(T (w)x,y) = {x,T" (w)y)
21
=L [xT () Ay (1) =T (D AX' (1) ]dt
o 217
=], 200 faO)PT AP (g1 (D), gn (D)t (2.17)
2 1
- [ Sovfingiwar =o
i=1
Let oq = o(s)/(M?*+1) and Bi(s) = B(s)/((M +1)*+1), then
c(s) =min{e;(s),B1(s)} = min{x(s),B(s)}/((M+1)*+1). (2.18)

Based on conditions (1.7), 1+°° c(s)ds = +o0. Since T’ (u) is positive definite on

Y and negative definite on X, we see that X n'Y = {0}. Moreover, it is readily
seen that
n

dimension X = dimensionZ = » (2N; +1). (2.19)
i1

Thus, since it was shown above that V = Z @Y, it follows, by application of
Lemma 1.3, that V = X @ Y. We may, therefore, apply Lemma 1.2 to get the
conclusion of the theorem.
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IfwesetV={v(t)=wi(t),....,. v ()T |vi(0) =vi (1) =0,i=1,...,m; V(L)
to be absolutely continuous and v’ (t) € L2[0, 1]}, it is easy to know that V is
a Hilbert space about the following inner product:

(u,v) =J: [WT (v ) +ul ()v(t)]dt. (2.20)

Again, define the norm induced by this inner product and subspaces X, Y, and
Z, correspondingly; we can prove the following theorem similarly. |

THEOREM 2.3. Assume that G(u,t) is continuous and C?-mapping with re-
spect to u and that conditions (1.7) hold for all t € [0, 1], all u € R", and for A
is admissible with matrices By and B,. Let e(t) be a continuous function. Then,
there exists a unique solution to (1.6), which satisfies boundary value condition
u(0) =u(m) =0.

Especially, when B; = N2J and B, = (N + 1)2I, where N is natrual and I
is m X n identity matrix, A is admissible with B; and B, as long as A is real
symmetric. So, we have the following corollary.

COROLLARY 2.4. Assume that A is real symmetric and there exist two positive
continuous functions 6, and 6> : R™ — R such that for allu € R"™ and all t €
[0,2m],

N2T <81 (w)I < V2G(u,t) < 8(u)I < (N+1)2. (2.21)

Let p(r) = min{l - maxsr g < (62(€)/(N +1)%),maxyn (g <, (61(§)/N?) —
1}, and if ffmp(r)dr = +oo, then the system (1.6) has a unique 27t -periodic
solution.

If we set A = 0, system (1.6) becomes a conservative system and admissibility
is trivial. So, the main conclusion in [7] (the method there is different from ours)
is a corollary of Theorem 2.2.

COROLLARY 2.5. Assume that there exist integers N; > 0 such that for all
ueR"andallt € [0,2717],

N2 <Ai(u,t) < (Ni+1)°, i=1,...,m;

2.22
S(llull,t) = max {min {Ai(u,t)—Nf,(Ni+1)2—2\i(u,t)}}, (222

lvli<lull C1<isn

where A;j(u,t),i=1,2,...,n denote the eigenvalues of V2G(u). Ifff[>o o(s,t)ds
=+oo forallt € [0,211], then there exists a 21T-periodic solution to (1.5).

Let G(u,t) = G(u) and
c(s) =min{ax(s),B(s)} =co>0; (2.23)

we can get the following unique existence corollary.
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COROLLARY 2.6. If the real symmetric matrix A is admissible with real sym-
metric matrices By and B, then assume that

B <V2G(u) <B;,  N2<A;<pi<(Ni+1)°, (2.24)

where A; and u; are eigenvalues of By and B,, respectively, and Ni,i=1,...,n
are nonnegative integers; there exists a unique 27t-periodic solution to system
(1.5).

3. Examples. It should be pointed out that conditions (1.9) and (1.11) are
not completely the same as (1.3). In fact, from (1.3), we know that «(|/x]|)
depends on subspace X and B(]|y||) depends upon subspace Y. So, condition
(1.3) is more strict than conditions (1.9). But, from (1.11), we can deduce the
following conditions:

J wtx(s)ds=+oo, I 00B(s)ds=+oo. 3.1)
1 1

Conversely, note that (3.1) does not imply (1.11). Now, we give an example to
illustrate it.

EXAMPLE 3.1. First of all, we define two nondecreasing functions as follows:

—(2i+1 )
x(x) = DY i) <X < X

e (3.2)
Blx) =27RH27 0 xo; < x < Xoi42,

where x; = Z};ZOZ"Z, i=0,1,...,x_1=0,and B(x) =1,when 0 < x < 1.

Itis easy to see that x(x) and B(s) are two nondecreasing positive functions
for all x € [0,+00); and the number of noncontinuous points is countable
infinite. We also have

too
_ X2i+1 —X2i-1
L a(x)dx = 1+Z S Gi

+ 00 2 2
2(21+1) +2(21)
i=

x Xoi 2(20)% 4 p(2i-1)?
J B(x)dx = Z 212(21');1 "= z 22i)2 =t (33)

2(2i+2)? 2(2i+1)?

J min {o(x),B(x)}dx < Z X2i+1 — X2i L Z X2i,—AX2i_1
i=0

Secondly, from the definition of «(x) and B(x), itis easy to make them con-
tinuous and even continuously differentiable, and then they are still positive
nondecreasing and satisfy (3.1), but they do not satisfy conditions (1.11).
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We can state, from the following example, that Theorem 2.3 is more general
than the results of [1, 2, 3, 4, 5, 6, 7, 8].

EXAMPLE 3.2. Assume that f(t) is continuous and 27r-periodic in (1.6). Let

4 3 2 .
G(u,t) = (1+§sm t) (u§+u§)+§(l+§sm2t)u1u2

+u;ln <u1 +4/1 +u§) +urln (u2+s/1 +u%> (3.4)
—1+u?—\1+us+Cru; + Coua,

then
E(1+%sm t) 1 §(1+gsin2(t)>
2 1+ u2 2 3
VEG(u,t) = 3/ 2 L s g I
2 1+fsin2(t)) 7<1+fsm t) b
2( 3 2 N2
1
5 3 S 0
5 9 J1+u?
ol o [ =viemn
22 0 —_—
2 2 J1+u3
<

13 5 S
2 2 ' J1+ui "
’ _
2
5)

It is easy to see that G (u,t) satisfies (1.7). Therefore, there exists a unique
21r-periodic solution to (1.6) by Theorem 2.2, but we cannot make this conclu-
sion from [1, 2, 3, 4, 5, 6, 7, 8].
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