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For µ ≥ 0, we consider a linear operator Lµ : A → A defined by the convolution
fµ∗f , where fµ = (1−µ)z2F1(a,b,c;z)+µz(z2F1(a,b,c;z))′. Let ϕ∗(A,B) de-
note the class of normalized functions f which are analytic in the open unit disk
and satisfy the condition zf ′/f ≺ (1+Az)/1+Bz, −1 ≤ A < B ≤ 1, and let Rη(β)
denote the class of normalized analytic functions f for which there exits a number
η∈ (−π/2,π/2) such that Re(eiη(f ′(z)−β)) > 0, (β < 1). The main object of this
paper is to establish the connection between Rη(β) and ϕ∗(A,B) involving the
operator Lµ(f). Furthermore, we treat the convolution I = ∫ z

0 (fµ(t)/t)dt∗f(z)
for f ∈ Rη(β).
2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions of the form

f(z)= z+
∞∑
n=2

anzn, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1} and S denotes the

subclass of functions in A which are univalent in U . Moreover, let S∗(α) and

K(α) be the subclasses of S consisting, respectively, of functions which are

starlike of order α and convex of order α, where 0 ≤ α < 1 in U . Clearly,

we have S∗(α) ⊆ S∗(0) = S∗, where S∗ denotes the class of functions in A
which are starlike in U and K(α) ⊆ K(0) = K, where K denotes the class of

functions inAwhich are convex inU , and we mention the well-known inclusion

chain K ⊂ S∗(1/2) ⊂ S∗ ⊂ S. For the analytic functions g and h on U with

g(0)= h(0), g is said to be subordinate to h if there exists an analytic function

w on U such that w(0) = 0, |w(z)| < 1, and g(z) = h(w(z)) for z ∈ U . We

denote this subordinated relation by

g ≺ h or g(z)≺ h(z) (z ∈U). (1.2)

For −1 ≤ A < B ≤ 1, a function p, which is analytic in U with p(0) = 1, is

said to belong to the class P(A,B) if

p(z)≺ 1+Az
1+Bz (z ∈U). (1.3)
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The above condition means that p takes the values in the disk with a center

(1−AB)/(1−B2) and a radius |A−B|/(1−B2). The boundary circle cuts the real

axis at the points (1+A)/(1+B) and (1−A)/(1−B). A function f ∈A is said to

be in ϕ∗(A,B) if zf ′/f ∈ P(A,B), and in K(A,B) if zf ′ ∈ϕ∗(A,B). The class

ϕ∗(A,B) was introduced by N. Shukla and P. Shukla [4]. Also, Janowski [2]

introduced the class P(A,B). For the fixed natural number n, the subclass

Pn(A,B) of P(A,B) containing functions p of the form p(z) = 1+pnzn+··· ,
z ∈U , was defined by Stankiewicz and Waniurski [7]. In addition, Stankiewicz

and Trojnar-Spelina [6] investigated a function p(z) = 1−pnzn−··· belongs

to the class R(n,A,B), where A∈ R and B ∈ [0,1] if p(z)≺ (1+Az)/(1−Bz).
Let Rη(β) denote the class of functions f ∈A for which there exists a number

η∈ (−π/2,π/2) such that

Re
[
eiη

(
f ′(z)−β)]> 0 (z ∈U, β < 1). (1.4)

Clearly, we have Rη(β) ⊂ S (0 ≤ β < 1). Furthermore, if a function f of the

form (1.1) belongs to the class Rη(β), then

∣∣an∣∣≤ 2(1−β)cosη
n

(
n∈N\{1}). (1.5)

The class Rη(β) was studied by Kanas and Srivastava [3].

The hypergeometric function 2F1(a,b,c;z) is given as a power series, con-

verging in U , in the following way

2F1(a,b,c;z)=
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, (1.6)

where a, b, and c are complex numbers with c �= 0,−1,−2, . . . , and (λ)n denotes

the Pochhammer symbol (or the generalized factorial since (1)n =n!) defined,

in terms of the Gamma function Γ , by

(λ)n := Γ(λ+n)
Γ(λ)

=

1 if n= 0,

λ(λ+1)···(λ+n−1) if n∈N = {1,2, . . .}.

(1.7)

Note that 2F1(a,b,c;z), for a = c and b = 1 (or, alternatively, for a = 1 and

b = c), reduces to the relatively more familiar geometric function. We also
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note that 2F1(a,b,c;1) converges for Re(c−a−b) > 0 and is related to the

Gamma functions by

2F1(a,b,c;1)= Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) . (1.8)

The Hadamard product (or convolution) of two power series f(z)=∑∞
n=0anzn

and g(z)=∑∞
n=0bnzn is defined as the power series

(f ∗g)(z)=
∞∑
n=0

anbnzn. (1.9)

N. Shukla and P. Shukla [4] studied the mapping properties of a function fµ to

be as given in

fµ(z)= (1−µ)z2F1(a,b,c;z)+µz(z2F1(a,b,c;z)
)′ (µ ≥ 0), (1.10)

and investigated the geometric properties of an integral operator of the form

I(z)=
∫ z

0

fµ(t)
t

dt. (1.11)

We now consider a linear operator Lµ :A→A defined by

Lµ(f)= fµ(z)∗f(z). (1.12)

For µ = 0 in (1.12), Lµ(f)= [Ia,b,c(f )](z), which was introduced by Hohlov [1].

Also, Kanas and Srivastava [3], and Srivastava and Owa [5] showed that the

operator Ia,b,c(f ) is the natural extensions of the Alexander, Libera, Bernardi,

and Carlson-Shaffer operators. In this paper, we find a relation between Rη(β)
and ϕ∗(A,B) involving the operator Lµ(f). Furthermore, we study to obtain

some conditions for the starlikeness and convexity of the convolution of I and

f , which are given by (1.11) and (1.1), respectively, for f ∈ Rη(β).

2. Main results. We make use of the following lemma.

Lemma 2.1 [4]. Sufficient conditions for f of the form (1.1) to be in ϕ∗(A,B)
and K(A,B) are

∞∑
n=2

[
(1+B)n−(A+1)

]∣∣an∣∣≤ B−A,
∞∑
n=2

n
[
(1+B)n−(A+1)

]∣∣an∣∣≤ B−A,
(2.1)

respectively.
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Theorem 2.2. Let a > 1, b > 1, and c > a+ b+ 1. If f ∈ Rη(β) and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
(1+B)

(
1+ µab

c−a−b−1

)
−(A+1)

(
µ− (µ−1)(c−a−b)

(a−1)(b−1)

)]

≤ (B−A)
(

1
2(1−β)cosη

+1
)
+ (A+1)(µ−1)(c−1)

(a−1)(b−1)
(2.2)

is satisfied, then Lµ(f)∈ϕ∗(A,B).

Proof. By Lemma 2.1, it suffices to show that

T1 :=
∞∑
n=2

[
(1+B)n−(A+1)

]∣∣∣∣∣
(
1+(n−1)µ

)
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣∣≤ B−A. (2.3)

Since f ∈ Rη(β) and |an| ≤ 2(1−β)cosη/n. Hence,

T1 ≤
∞∑
n=2

[
(1+B)n−(A+1)

](1+(n−1)µ
)
(a)n−1(b)n−1

(c)n−1(1)n−1

2(1−β)cosη
n

= 2(1−β)cosη


(1+B)


 ∞∑
n=0

(a)n(b)n
(c)n(1)n

−1




− (A+1)(c−1)
(a−1)(b−1)


 ∞∑
n=0

(a−1)n(b−1)n
(c−1)n(1)n

−1− (a−1)(b−1)
c−1




+ (1+B)µab
c

∞∑
n=0

(a+1)n(b+1)n
(c+1)n(1)n

−(A+1)µ


 ∞∑
n=0

(a)n(b)n
(c)n(1)n

−1

− c−1
(a−1)(b−1)


 ∞∑
n=0

(a−1)n(b−1)n
(c)n(1)n

−1− (a−1)(b−1)
c−1








= 2(1−β)cosη
{
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
(1+B)

(
1+ µab

c−a−b−1

)

+(A+1)
(
µ− (µ−1)(c−a−b)

(a−1)(b−1)

)]

−
[

1+B−(A+1)
(

1− (µ−1)(c−1)
(a−1)(b−1)

)]}
.

(2.4)

Now, this last expression is bounded above by B−A if (2.2) holds.
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If we take µ = 0, A= 2α−1, and B = 1 in Theorem 2.2, we have the following

corollary.

Corollary 2.3. Let a > 1, b > 1, and c > a+b+1. If f ∈ Rη(β) and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
1− α(c−a−b)

(a−1)(b−1)

]

≤ (1−α)
(

1
2(1−β)cosη

+1

)
− α(c−1)
(a−1)(b−1)

(2.5)

is satisfied, then z2F1(a,b,c;z)∗f ∈ S∗(α).
If we take α = 0, β = 0, and η = 0 in Corollary 2.3, we get the following

corollary.

Corollary 2.4. Let a > 1, b > 1, and c > a+b+1. If f ∈ S, and the in-

equality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) ≤

3
2

(2.6)

is satisfied, then z2F1(a,b,c;z)∗f ∈ S∗.

Theorem 2.5. Let a > 0, b > 0, and c > a+b+ 2. If f ∈ Rη(β), and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
B−A+((1+B)(1+2µ)

−(A+1)µ
) ab
c−a−b−1

+ (1+B)µ(a)2(b)2
(c−a−b−2)2

]

≤ (B−A)
(

1
2(1−β)cosη

+1
)

(2.7)

is satisfied, then Lµ(f)∈K(A,B).
Proof. The proof follows from Lemma 2.1. Using the method of the proof

of Theorem 2.2, we omit the details involved.

For µ = 0, A= 2α−1, and B = 1, Theorem 2.5 yields the following corollary.



1088 J. A KIM AND K. H. SHON

Corollary 2.6. Let a > 0, b > 0, and c > a+b+2. If f ∈ Rη(β) and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
1−α+ ab

c−a−b−1

]
≤ (1−α)

(
1

2(1−β)cosη
+1

)
(2.8)

is satisfied, then z2F1(a,b,c;z)∗f ∈K(α).
For α= 0, β= 0, and η= 0, Corollary 2.6 yields the following corollary.

Corollary 2.7. Let a > 0, b > 0, and c > a+ b + 1. If f ∈ S and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
1+ ab

c−a−b−1

]
≤ 3

2
(2.9)

is satisfied, then z2F1(a,b,c;z)∗f ∈K.

In our next theorems, we find the sufficient conditions for I ∗ f to be in

ϕ∗(A,B) and K(A,B). From the definition of I given by (1.11), we obtain

I(z)= z+
∞∑
n=2

(
(1−µ)+nµ)(a)n−1(b)n−1

(c)n−1(1)n
zn (µ ≥ 0, z ∈U). (2.10)

Theorem 2.8. Let a> 1, b > 1, and c > a+b. If f ∈ Rη(β) and the inequality

(
1+B−(A+1)µ

)
2F1(a,b,c;1)−(A+1)(1−µ)4F3(a,b,1,1,c,2,2;1)

≤ (B−A)
(

1
2(1−β)cosη

+1

)
(2.11)

is satisfied, then I∗f ∈ϕ∗(A,B).

Proof. By Lemma 2.1, it satisfies to show that

T2 :=
∞∑
n=2

(
(1+B)n−(A+1)

)∣∣∣∣∣ (1−µ+nµ)(a)n−1(b)n−1

(c)n−1(1)n
an

∣∣∣∣∣≤ B−A. (2.12)
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Suppose that f ∈ Rη(β). Then by (1.5) we observe that

T2 ≤
∞∑
n=2

(
(1+B)n−(A+1)

) (1−µ+nµ)(a)n−1(b)n−1

(c)n−1(1)n
2(1−β)cosη

n

= 2(1−β)cosη
{(
(1+B)(1−µ)−(A+1)µ

) ∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n

−(A+1)(1−µ)
∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n+1

+(1+B)µ
∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1

}

= 2(1−β)cosη
{(
(1+B)(1−µ)−(A+1)µ

)( c−1
(a−1)(b−1)

+2F1(a,b,c;1)
)

−(A+1)(1−µ)4F3(a,b,1,1,c,2,2;1)

+(1+B)µ2F1(a,b,c;1)

−
[(
(1+B)(1−µ)−(A+1)µ

) c−1
(a−1)(b−1)

+B−A
]}

≤ B−A
(2.13)

by (2.11). This completes the proof.

Taking µ = 0, A = 2α−1, and B = 1 in Theorem 2.8, we see the following

corollary.

Corollary 2.9. Let a > 1, b > 1, and c > a+b. If f ∈ Rη(β) and the in-

equality

2F1(a,b,c;1)−α4F3(a,b,1,1,c,2,2;1)≤ (1−α)
(

1
2(1−β)cosη

+1

)
(2.14)

is satisfied, then
∫ z
0 2F1(a,b,c;t)dt∗f ∈ S∗(α).

Takingα= 0,β= 0, andη= 0 in Corollary 2.9, we get the following corollary.

Corollary 2.10. Let a> 1, b > 1, and c > a+b. If f ∈ S and the inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) ≤

3
2

(2.15)

is satisfied, then
∫ z
0 2F1(a,b,c;t)dt∗f ∈ S∗.
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Theorem 2.11. Let a > 1, b > 1, and c > a+b+1. If f ∈ Rη(β) and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
(1+B)

(
1+ µab

c−a−b−1

)

+(A+1)
(
µ
(

c−a−b
(a−1)(b−1)

−1
)
− c−a−b
(a−1)(b−1)

)]

≤ (B−A)
(

1
2(1−β)cosη

+1
)
− (1−µ)(A+1)(c−1)

(a−1)(b−1)

(2.16)

is satisfied, then I∗f ∈K(A,B).
Proof. The proof follows from Lemma 2.1 and by applying similar method

as in the proof of Theorem 2.8; we omit the details involved.

If we let µ = 0, A= 2α−1, and B = 1 in Theorem 2.11, we get the following

corollary.

Corollary 2.12. Let a > 1, b > 1, and c > a+b+1. If f ∈ Rη(β) and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

[
1− α(c−a−b)

(a−1)(b−1)

]

≤ (1−α)
(

1
2(1−β)cosη

+1
)
− α(c−1)
(a−1)(b−1)

(2.17)

is satisfied, then
∫ z
0 2F1(a,b,c;t)dt∗f ∈K(α).

If we let α = 0, β = 0, and η = 0 in Corollary 2.12, we have the following

corollary.

Corollary 2.13. Let a > 1, b > 1, and c > a+ b + 1. If f ∈ S and the

inequality

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) ≤

3
2

(2.18)

is satisfied, then
∫ z
0 2F1(a,b,c;t)dt∗f ∈K.
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