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BOUNDARY VALUES AND THE TRANSFORMATION PROBLEM
FOR CONSTANT PRINCIPAL STRAIN MAPPINGS
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We initiate a study of homeomorphisms f with constant principal strains (cps)
between smoothly bounded planar domains D, D’. An initial result shows that in
order for there to be such a mapping of a given Jordan domain D onto D’, a certain
condition of an isoperimetric nature must be satisfied by the latter. Thereafter, we
establish the fundamental fact that principal strain lines (characteristics) of such
mappings necessarily have well-defined tangents where they meet 0D. Using this,
we obtain information about the boundary values of the Jacobian transformation
of f, and finally we determine the class of all cps-homeomorphisms of a half-plane
onto itself.

2000 Mathematics Subject Classification: 35145, 35L60, 74B99, 30C35.

1. Introduction. This paper deals with mappings with constant principal
strains, that is, mappings f of a planar domain D into R? for which the prin-
cipal stretches of the Jacobian matrix J; of f at z are distinct positive con-
stants m; and m». Global properties of such f, to be referred to as (m,my)-
mappings or less specifically as cps-mappings, were studied in [2, 3, 5, 6].
Homeomorphisms of this kind represent 2-dimensional deformations with
constant principal strains such as those effected by cryptocrystalline solidi-
fication of a planar lamina, in which context the study of global properties
of cps-mappings will yield, among other things, information about the man-
ner in which such deformations can change shape as well as how the original
mass can be shifted around in the process. In addition, (1, m,)-mappings
constitute a tractable subclass of (mi, m»)-quasi-isometries (i.e., local home-
omorphisms for which the local stretching factors are merely constrained to
lie between m, and m>). Because they realize the local length change bounds
extremally at all points, it is reasonable to believe that (m;,m,)-mappings
manifest extremal behavior for some, at least, of the many open distortion
questions for planar quasi-isometries (see [10, 11]).

Although, as we will presently explain, the systems of partial differential
equations which define them are hyperbolic, significant analogies of conformal
mappings discussed here and in the papers cited above lend credence to the
belief that an interesting function theory for cps-mappings can ultimately be
developed. Yet another motivation for this study lies in the fact that, other
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than conformal mappings, the classes of (m,,m;,)-mappings are the only ones
that can be defined by restricting the Jacobian to have values in a 2-parameter
family of linear transformations in which no arbitrarily stipulated reference
directions in the domain or image planes appear, a sine qua non for any direct
extension to the more general Riemannian manifold context, as was pointed
out in [2].

To continue this introductory discussion, it is advantageous to outline the
formal local theory of (m;,m»)-mappings. Let D ¢ C and let f: D — C (we
henceforth associate R? with C and freely mix real and complex notation)
be differentiable in D. In slight abuse of usual terminology, the nonnegative
square roots m;i(z), my(z) of the eigenvalues of the symmetric matrix
Jf(Z)TJf(Z) will be called the principal strains of f at z. An (mq, m;)-mapping
is an orientation-preserving mapping for which (the entries of) J ¢ are in Lip(D),
the class of locally Lipschitz continuous functions on D, and such that my(z) =
my > 0, k = 1,2 for all z € D; the reason for the Lipschitz requirement will
become clear in what follows. (See also the final paragraph of Section 7). We
henceforth denote the set of all such mappings by the symbol cps(D,n1,,m>).
It is immediate that for simply connected D, f € cps(D,m1,m») if and only if
there are 0 = 0 and ¢ = ¢ in Lip(D) such that Jy = T(=¢)o (m,,m»)T(0),
where

cos@ sin@ m; O
(o) = [—sin@ Cosé]’ o (my,my) = [ 0 mz}' (1.1

At each point z € D, ¢?%@ and ie'@ give the directions in which f effects a
length change by factors m; and m., respectively, and e'*? and ie!®@ give
the corresponding image directions. For 6 € Lip(D), the integral curves of the
direction fields e??® and ie'?®) will be called 1- and 2-characteristics, respec-
tively. Straightforward calculations based on the equality of mixed second-
order partial derivatives show that if D is simply connected and 0, ¢ € Lip(D),
then T(—¢)o (my,m»)T(0) is the Jacobian matrix of an (m,m;)-mapping if
and only if m,0 — mo¢ and m20 — m, ¢ are constant along each 1- and 2-
characteristic, respectively, that is, if and only if 6, ¢ constitute a solution, in
an appropriate sense, of the system

Dl(mle—mgcl)) =O; Dz(?’l’lz@—mlq5) =0, (1.2)

where Dyu = cos Quy +sinfu, and Dou = —sinOuy +cos Ou,,. Because of the
obviously hyperbolic nature of this system, it is clear how we can manufacture
large classes of cps-mappings as solutions to Cauchy or characteristic initial
value problems. Further calculations show that a C2-function @ is associated
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in this manner with an (mi,m;)-mapping if and only if it satisfies either of
the second-order hyperbolic equations

DyD10=[D10]° or DD,0=—[D,0]". (1.3)

For any 6 satisfying these equations in D, the corresponding ¢ is determined
to within an additive constant by (1.2). In the case of multiply connected D,
of course, the ¢ so determined, and consequently the corresponding f, will in
most cases be multiple-valued.

Equations (1.2), together with the appropriate weak counterpart of (1.3), to
be explained in the following section, form the basis of the global theory of
cps-mappings. The latter say exactly how the curvatures Dy 6 of the charac-
teristics change as we move along the orthogonal characteristics and imply,
in particular, that the curvatures, unless initially 0, must eventually blow up,
that is, that 0, and consequently Jr, must loose its local Lipschitz continuity
if given enough room. Specifically, we have the sharp bound

1

| Dic6(z0) | = dist (z¢,0D)

(1.4)

(when the left-hand side is meaningful). This implies that cps(C,m,m;) con-
tains only affine mappings, a cps-analogue of Liouville’s theorem for analytic
functions. More importantly, though, (1.4) tells us that {J : f € cps(D,my,
my)} is locally uniformly Lipschitz in D, and, in addition, allows us to derive
a sharp distortion theorem (see [3]) to the effect that f(N(z,7)) is convex for
all f € cps(N(z,1),m1,m) if and only if r < (min{m,m»}/ max{m;,mo})?,
where N (z,7) denotes the disk of radius » about z. This fact, together with the
compactness principle (see Proposition 2.3), suggests that it should be possi-
ble to develop further sharp distortion results for cps-mappings which parallel
some of the theorems of classical geometric function theory.

Instead of pursuing this possibility, however, in the present paper we ex-
amine the analogues of several other aspects of analytic function theory, all
related to the general question, loosely referred to as the transformation prob-
lem, of when and how the domains D and D’ can be mapped homeomorphi-
cally onto one another via cps-mappings. After Section 2, in which we for-
malize terminology and state the necessary basic facts, in Section 3 we take
up the question as to whether two given domains D and D’ can be trans-
formed onto one another by cps-mappings. Although for any Jordan domain D
Um,,m, CPS(D,m1,m») is a very large class, we show that for any such smoothly
bounded D there are smoothly bounded D’ onto which D cannot be mapped
homeomorphically by any cps-mapping; we do this by deriving a necessary
condition on D’, of an isoperimetric nature, for such a mapping to exist. Even
though, in all likelihood, an intrinsic geometric characterization of all those
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D’ onto which a given D can be so transformed would be difficult to come by,
the determination of all cps-mappings between two given domains, especially
in the case where D = D’, constitutes a significant issue. In order to pursue
this question, however, it is necessary, in view of the hyperbolic nature of the
basic equations, to determine to what extent such mappings are the solution
of relevant Cauchy problems.

Fundamental to any analysis of this issue is the fact, established in Section 4,
that if f is any cps-homeomorphism of D onto D’, where 0D and 0D’ are
smooth curves (i.e, with C! arc length parametrizations) and C is a character-
istic which meets 0D at p, then the limit of 87(z) as z — p along C exists. This
allows us to show in Section 5 that for each zo € 0D, lim,_,,(0¢(z),$r(z))
exists in the sense that it tends to the solution of a “Riemann problem” for
system (1.2) in a half-plane, so that the possibilities for the limiting behavior
of 0¢(z) and ¢ s(z) are governed by just two parameters (or four, if we include
the inclinations of the tangents to D and 0D’ at p, and f(p)). This “boundary
regularity” of J is very much in the spirit of analogous results for the deriva-
tives of conformal mappings such as the well-known theorem of Lindelof ([12,
Theorems 10.1, 10.4]).

It turns out that in the two significant cases of the half-plane and the exte-
rior of a disk C\N (0, 1), geometric arguments based on (1.2) and (1.3) allow one
to show that, apart from certain degeneracies which occasion no difficulties,
all cps-self-homeomorphisms are associated with Cauchy problems, a circum-
stance which enables us to give a complete description of the relevant families;
we do so for half-planes in Section 6 but leave the discussion of the somewhat
more involved case of C\N(0,1) to a subsequent paper. In both instances the
reduction to Cauchy problems strongly depends on the fact that the geometry
of the domains permits us to show that all characteristics meet 0D in exactly
one point, a feature patently absent in the case, for example, of Jordan do-
mains. In the concluding Section 7, we discuss some of the issues suggested
in a natural way by the considerations of the preceding sections.

2. Preliminaries. Most of the facts stated in this section were proved in
complete detail in [5], so that we will include proofs here only for points not dis-
cussed in that paper. To facilitate the discussion of characteristics, we begin by
amplifying the notational conventions given in the introduction. As indicated,
for 0 € Lip(D), the complete integral curves of the direction fields e®? and
ie1?@) will be called 1- and 2-characteristics, respectively, of 8, or of f, when
0 = 0. Note that if we regard f as an (m1,my)-mapping, rather than as an
(m», m1)-mapping, e’/ ? gives the direction in which lengths are changed by
a factor of m, at z. Throughout, {i, j} = {1,2}. Arcs of k-characteristics will be
called k-arcs or, less specifically, characteristic arcs. Unless otherwise stated,
the term “characteristic” used alone refers to complete characteristics, which
we sometimes emphasize by the inclusion of this modifier. When discussing an
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i-characteristic, the j-characteristics that cross it will be referred to as the or-
thogonal characteristics. If z = z(s), &1 < 5 < 2 is a parametrization of a com-
plete k-characteristic C, then for any so € (1, x2), z((x1,50]) and z([sg, x2))
will be called k-half-characteristics. In addition, if lim ., z(s) =zp € 0D, i =1
or 2, then we say that C exits D at zy. Obviously, a characteristic can either
not exit at all, exit at exactly one end, or exit at both ends (doubly exiting char-
acteristic). When working with a characteristic C parametrized in this way, we
use the term to the right (left) to mean in the direction of —iz’(s) (iz’(s)). The
letter s will always indicate an arc length parametrization.

With reference to a specific such 6, a characteristic arc C joining points a,b €
D, oriented from a to b, will be denoted by ab, and we use the abbreviation

AB(C) =AB(ab) =0(b)-0(a). (2.1)

A domain Q c D will be said to be a characteristic quadrilateral of f if 0Q is a
Jordan curve lying in D and containing four points a, b, ¢, d occurring in that
order when 0Q is traversed (in either the positive or negative sense) and such
that ab and cd are i-arcs, and bc and da are j-arcs. We will refer to such a Q
as abcd and use the abbreviation

A*0(abcd) = AO(bc)—A0(ad) = AO(dc) —AO(ab). (2.2)

Opposite sides of a characteristic quadrilateral will be referred to as translates
of each other. For a given such Q, if Cy is a k-arc joining opposite sides of Q
parametrized by zi(s), Tk < § < 0y, k = 1,2, then the standard characteristic co-
ordinate mapping C: [T, 0:]1 X [Tj,0;] — Q maps (s;,s;) onto the intersection
of the j-characteristic through z;(s;) with the i-characteristic through z;(s;).

Let D C C be simply connected and let 9,¢ € Lip(D). Then, as indicated in
the introduction, Jr = T(-¢)o (m,m2)T(0) is the Jacobian of a mapping if
and only if (1.2) hold a.e., that is, if and only if

Ri:mie—mjcl), i:1,2, (2.3)

is constant along each i-characteristic. Moreover, 6 € Lip(D) is 0 for some
(m1,my)-mapping f of D if and only if A20(Q) = 0 for all characteristic
quadrilaterals Q of 6 contained in D. Such functions 0 are called HP-functions
since the families of integral curves of the two fields e and ie’? for such
0 are known as Hencky-Prandtl nets (HP-nets). (For the relevance of HP-nets
to other contexts as well as a discussion of their elementary properties, see
[1, 7, 8,9, 13].) We will refer to the fact that A20(Q) = 0 as the HP-property.
As indicated in the preceding section, D; and D, will denote differentia-
tion with respect to arc length in the directions e??? and ie'??, respectively.
We use the symbol Ay(E), k = 1,2, to denote the k-dimensional measure of
the set E, so that A, (C), in particular, is the arc length of the simple arc C.
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Furthermore,
N(X,r) =U{N(z,7):z € X}. (2.4)

Next, we explain the sense in which the blow-up equations (1.3) hold for
general (i.e., not necessarily C2) HP-functions 6. We define E; = E;(0) to be
the set of all points p such that if z = z(s), —€ < 5 < €, with z(0) = p is
an arc length parametrization of an i-arc of 0 containing p, then 0(z(s)) is
differentiable at s = 0. Obviously, almost all points (with respect to arc length)
of each i-characteristic belong to E; and almost all points of the domain on
which 6 is defined (with respect to A2) belong to E; N Es.

PROPOSITION 2.1. Let 0 be an HP-function on D and let Cy, k = 1,2 be the
k-characteristic through p € E;. Then, C; C E; and the relevant equation in (1.3)
holds along Cj when Dy is interpreted as arc length differentiation along Cy in
the direction e'” for k = 1 and ie'® for k = 2.

If z=12z(s), ®x <s < B, is an arc length parametrization of an my-arc, then
since 0 € Lip(D), kix(z(s)) = dO(z(s))/ds = Dy0(z(s)) exists almost every-
where on («, f) and gives the curvature of the k-arc through z(s). This means
that if k;(z) exists then z is joined to dD by a j-arc of length at most 1/|k;(z)|
emanating from the concave side of the i-characteristic through z. Because of
this, we immediately obtain the following result.

PROPOSITION 2.2. Let f be a cps-mapping on D, then

1
+ _
Di0(20) = q5tz0D) (2:5)
for all zq € D, where
D{6(p) =limsup | D0(2) |. (2.6)
z—p

From this, in turn, we easily deduce the following result.

PROPOSITION 2.3 (compactness principle). Let D and B be a bounded do-
mains, and let { fi} be a sequence of CPS mappings for which fy (D) C B. Then
{fx} contains a subsequence which converges uniformly to a cps-mapping f
on D, and for which the corresponding first-order derivatives converge locally
uniformly on D to those of f.

We will also need the following proposition.

PROPOSITION 2.4. Let the mapping C : I X I, — Q, where I; = [T;,0i], be a
characteristic coordinate mapping (as described above). If the lengths of all of
the translates of C, = z>(I2) along C1 = z1 (I, X {T2}) are at least p, then the
area of (I, X I) is at least pA,(Cy) /2.
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Throughout, the term smooth curve will refer to one with a continuously
turning tangent; that is, one for which the arc length parametrization is C'. If
C is a characteristic of f exiting D at p for which the limit of 6(z) exists as
z — p (so that C has a well-defined tangent at p), then it follows from (1.2) that
the corresponding limit of ¢p(z) also exists, which means that f(C) also has a
well-defined tangent at f(p).

PROPOSITION 2.5. There exists a positive function W = W(u,x), 41> 1,0 <
« < 1, which for any given u is nondecreasing in « and which has the fol-
lowing property. Let D and D’ be Jordan domains, and let f be an (my,my)-
homeomorphism of D onto D'. Let E and E’ be smooth arcs of 0D and 0D’. Let
C be a characteristic arc of f which exits D at endpoint p of E and for which
the limit of 0¢(z) exists as z — p along C. Let « € [0, 1r] be the angle formed by
C and E at p, and let &' denote the corresponding angle formed by f(C) and
f(E) in the image. Let m; < m;. Then,

m; m; Comi ) .
L+ W(—J, o<) <o < —La ifC is an i-characteristic, (2.7)
m; m; m;
—x<o < —J(X—W<—J,o<) if C is j-characteristic. (2.8)
m; mi mi

PROOF. Firstassume that C is an i-characteristic. Without loss of generality,
we can assume that p is the initial point of E. After appropriate compositions
of f with rigid motions, we can assume that p = f(p) = 0, that the positively
oriented tangents to both E and E’ at 0 have the direction of the positive real
axis, and that the unit tangents to C and f(C) at 0 are e® and e'®’. Let u =
m;j/m;, and let S(y) denote the sector {z | 0 < argz < y}. Since C is an i-arc, by
applying the compactness principle to the family of mappings f(nz)/m;n, we
obtain (1, u)-homeomorphism g of S(«) onto S(«’) such that g(tei®) = tei®
t > 0. We have

N, 1)nS(x') € g(N(©0,1) NS(e0)), (2.9)

so that

’

& =A2NO, 1) nS (@) = A2 (g (N(0,1) nS(e0) = 5, (2.10)

which gives the upper bound in (2.7). In addition,

N(l#ei“,“T_l) AN(0,1) = @, 2.11)
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and S(«) contains one of the semidisks Q (u, ) into which the line argz = «
cuts the disk

e min g FEE S in (min e 7 )
N( > e'* min TR sin [ min 0(,2 . (2.12)

Relation (2.11) implies that Q (u,x) N N(0,1) = @. Since g((1+u)ei®/2) =
(1+p)ei® /2, it follows that g(Q (i, x)) € S(x’) "N (0, ). We have

g(N(0,1)nS(x)) € (S(') NN, ))\g(Q (1, ), (2.13)
so that
2
% = A (g(N(0,1)nS(x))) < “2” — A2 (Q(p, 00)); (2.14)
thatis, o < pax’ —2A2(Q (u, x)), so that we have
X ’
E +Wi(u,x) <o’ < uw, (2.15)
where
. . . 2
Wi, 00) = m(min{(u—1)/2u, (1+u)/2sin(min{x,/2})}) _ (2.16)

u

If C is a j-characteristic, then we apply (2.15) to the (1/m,1/m;)-homeomor-
phism f~! to obtain

of <px—puwi(u, o), o = (2.17)

x
0
Since for fixed p, Wi (u, «) is nondecreasing in «, it follows that Wy (i, «’) >
Wi (u, /). Thus, in the case that C is a j-characteristic, we have

x x
— <& < pux-— W( ,—), (2.18)
y H Wi H 1y

so that Proposition 2.5 is established with

W (31,00 = min {3 (1,00, 13 (u%)} (2.19)

which is clearly a positive nonincreasing function of «. ]
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PROPOSITION 2.6. There is a positive decreasing function y = Yy my (£ with
the following property: let D and D' be Jordan domains and let f : D — D’ be
an (my, my)-homeomorphism of D onto D’ under which smooth boundary arcs
E and E’ correspond to each other. Let C be a characteristic of f joining the
endpoints a and b of E for which the limits of 0(z) exist as z — a,b along C,
and for which the interior angles of the simple closed curve EUC ata and b are
« and B. Let the change in the tangent inclinations along E and E' (measured
in the positive direction along the boundaries) be d and d'. Then, |d| + |d'| >
y(0) +y(B).

PROOF. Let m; < m; and let C be an i-characteristic taken as positively
oriented with respect to the interior of EUC. Let u = mj/m;. Then,

AO(C)+d = x+ B,

o« B (2.20)

AO(C) +W (00 +W(,B),

+d =Ap(C)+d =’ +B =

where " and B’ are the image angles corresponding to & and 8, and W is the
function of the preceding proposition defined in (2.16) and (2.19). Thus

e L s p), 2.21)
so that
4 4 d
ldl+1d"| > d f;zW(u,aHW(u,B). (2.22)
A similar bound holds in the case that C is a j-characteristic. |

An examination of the proof (with d = d’ = 0) shows that under the same
hypotheses, there cannot exist a characteristic which joins an interior point of
E to itself.

PROPOSITION 2.7. There is a Tg = To(m;,mj) > 0 with the following prop-
erty:let D, D', E, E', and f be as in the preceding proposition. Let a, b, and ¢
be interior points of E. Let C be an i-arc which joins a and b and let C be a
Jj-arc joining a point e of C to ¢ outside the subdomain U of D bounded by C
and the arc ab of E. Assume that the limits of 0(z) exist as z — a along C and
as z — ¢ along C. Let the interior angle of 0U at a be x = 0 and let AB(ae) = §.
If ¢,10| < Tg, then |d| + |d’| = T9, where d and d' are the changes in the angle
tangent to 0D and 0D’ along ac and f(ac), respectively.

PROOF. Let T be the curvilinear triangle bounded by the arc ae of C, C, and
the subarc B of E joining a and c. Let y > 0 and w be the interior angles of
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T at ¢ and e, respectively. There are two cases: (i) w = 371r/2 and (ii) w = 11/2,
corresponding, respectively, to the cases that a comes before and after ¢ when
E is traversed in the positive sense with respect to D. Let § and 6 be the changes
in 0 along ae and C when these arcs are traversed in the positive sense with
respectto T, and let d and d’ be the corresponding changes in the tangent angle
along B and f(B).Let u = m;/m; and let &’ and y’ be the angles corresponding
to e and y in f(T). In case (i) we have

S=—+y+a-6-d, ud=

o) 3
g

+y’+(x’—%6—d’. (2.23)

Let «,|0| < Top. Assume first that g > 1. From Proposition 2.5 and the second
of these equations it follows that

us <

o g

+uy+u(x7%67d’, (2.24)
so that in light of the first equation,

us < +u(3—g—(x+6+d> +ua—16—d’
H (2.25)

7T = 14
<1-p +uo+2uTto+p(ldl+1d'l),

sothat |d|+|d'| = ((u—1)(1r/2) —2uTo) /1, which gives the desired conclusion
with an appropriate 7. If u < 1, then we have

< T 1

0=~ +uy+ux——6-d

MO = oy +pa=
:—72T+u(57—gf(x+5+d>+u(xf%57d’ (2.26)

_ 0 ,
> (17u)g+uéfﬂ‘r0*(|d|+\d 1,

sothat |d|+|d'| = (1 —pu)(1t/2)—(2/u)To, which again gives the desired result.
Case (ii) is handled similarly; here we have

32%4—}/—0(—6—01, us =

[T~

+y’—cx’—%5—d’. (2.27)

Assume first that gy > 1. From Proposition 2.5 and the second of these equa-
tions it follows that

- T
H(SSE

+uy—%6—d', (2.28)
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so that in light of the first equation,

us < %+u<5—g+(x+6+d)—lé—d’
H (2.29)

< (17u)%+u5+3uTo+u(ldl+\d’\),

so that |d| +|d'| = ((u—1)(1r/2) — 3uTy) /U, which again gives the desired
conclusion. Finally, if u < 1, we have

us = g+u<g—g+(x+6+d)—%a—%6—d’
(2.30)

_ 3 ,
> (1—u)%+u6—ﬁTo—(ldl+\d ),

so that |d|+|d'| = (1 —u)(1t/2) — (3/u) Ty, and we are done. O

PROPOSITION 2.8. Let D be a Jordan domain, and let z = z(s), x < s <
be an arc length parametrization of a full characteristic C of an HP-net on D.
Then, lim,_.,z(s) and lim,_gz(s) exist and belong to 0D.

PrROOF. First of all, dist(z(s),0D) — 0 as s — « (and similarly as s — B). If
this were not true, then there would be a zy € D and an € > 0 such that for
some sequence {s;} tending to «, z(s;) — zo but z([s;,5i+11) NON(zg,€) = D.
But from this it would follow that some orthogonal characteristic crosses C
twice, an impossible occurrence in light of the simple connectivity of D. We can
now show that, in fact, z(s) — a, b € 0D as s — «, B, respectively. Assume that
this is not so, as s — f3, for example. The foregoing then implies that there is an
arc E of 0D, each point of which is an accumulation point of Cy, = {z(s) : 5 > y}
for each y € (&, B). Since in this case C is clearly not a straight line segment,
it follows from the comment immediately following Proposition 2.1 that there
is an orthogonal half-characteristic C’ of finite length which joins some z(o)
to a point e € 0D. Since C cannot cross C’ twice in D, C, € D\C'. Let z1, z» be
distinct points of E\{e}. For each § > 0, C, has a subarc pp’ ¢ N(0D,d5)\C’,
with p,p’ € N(z1,6) and a point p”’ € pp’ "N (z»,9). For obvious topological
reasons, for each sufficiently small §, there must be a point g on pp’ which is
joined to a point in N(z,6) by an orthogonal characteristic arc B of length at
least |z; — z2| — 26 such that the curvature of C at g tends to infinity as 6 — 0
and C is concave towards the side from which B emanates. But this clearly
violates Proposition 2.1, as indicated in the paragraph immediately following
its statement. 0

PROPOSITION 2.9. If D is a Jordan domain with smooth boundary, then all
characteristics of every HP-net on D have finite length.
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PROOF. Let C be parametrized as in the statement of the preceding lemma
and let b = lim,_g z(s). Without loss of generality we assume that b = 0 and
that the positively oriented tangent to 0D at 0 has the direction of the positive
real axis. We only consider the part of C* = z([(x+)/2,8)) that is within ¢
of b, where |z((x+B)/2) —b| = 2€ and € is so small that N(0,2¢) N D is so
close to being a semidisk that for 0 < § < 2¢, dN(0,6) N D is connected and
dist(5i,0D) = 6/2. Now consider any 6 < € and look at the part Cs = C*n {z:
Rz >0, (1/2)6 < |z| <6} of C* in the right half of the “semiring” of points
of D within (1/2)6 and 6 of b. Note that Cs may have several components.
For each p € Cs let E, denote the maximal orthogonal characteristic arc in
N(0,26) N D emanating rightwards from p (as we move along C towards b). By
our choice of €, A1 (E,) = (1/4)4. In addition, all of the E, are disjoint. It then
follows from the lower bound for the area of characteristic quadrilaterals given
in Proposition 2.4 that 41162 = A2 (N (0,25)) = (1/8)5A;(Cs), so that A1 (Cs) <
321td. Obviously, the same bound will hold when the left half of the semiring
is considered instead of the right half. But by considering 6 = (1/2)"€, n > 0,
we will then have that the length of the part of C* within € of b is at most
1287re. This shows that A; (C*) < o. By symmetry, A; (C) < . O

3. A property of image domains. Let D be a simply connected domain. Be-
cause an (mp, m»)-homeomorphism can alter lengths of curves only by factors
between m; and m., it is obviously not possible to transform D onto every
other simply connected domain by means of a homeomorphism in cps(D,m,
my). Furthermore, because of the local Lipschitz continuity of such f,
cps-homeomorphisms necessarily preserve both smoothness and irregularity
of the boundary to some extent. It is, however, not unreasonable to ask if
each smoothly bounded Jordan domain D can be transformed by some cps-
homeomorphism, with appropriate m;, m, onto any other such domain. We
show that cps-mappings, while clearly forming a “large” class, do not pos-
sess this transformation capability; indeed, the following theorem shows that
all homeomorphic cps-images of a smoothly bounded Jordan domain D must
satisfy a shape requirement of an isoperimetric nature. In the following the-
orem, ((E) = sup{r : N(z,v) C E}, the inradius of the Jordan domain E. It is
clear that there is a zy in E such that N(zg,t(E)) C E.

THEOREM 3.1. For each smoothly bounded Jordan domain D, there exists a
constant C = Cp such that A, (0E) < CAx(E)/U(E) for every Jordan domain E
which is the image of D under a cps-homeomorphism.

PROOF. Let g € cps(N(zg,p),m1,my). It follows from Proposition 2.2 that
for 0 < € < 1, 0y is Lipschitz continuous with Lipschitz constant (p(1—&))~!
in the concentric disk N (zy, Ep). Upon taking into account what this says about
the curvature of characteristics of such g, we see that for very small & char-
acteristic arcs in N(zo, Ep) are “virtually” straight line segments, so that there
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is a &y such that any two distinct i-arcs a,b, and a»b» of g in N(z¢,p) with
ai,by,a2,by € ON(zp,2&yp) may be joined by a j-arc of g lying entirely in
N(zp,p). From this it follows that if F D N(zg,p) is any simply connected do-
main and g € cps(F) and A is any i-arc of g in F, then AN N(zy,2&p) has
at most one component. Indeed, were it to have more than one, then by the
foregoing these could be joined by a j-arc B of g in N(zg,p). But then B and A
would have at least two points of intersection, which is incompatible with the
simple connectedness of F. By making &, smaller, if necessary, we can assume
that all i-arcs ab in N(z,&pp) are contained in N([a,b],Eyp/100), so that for
any m < &yp /100 and any i-arc A,

A2(N(A,m)NN(z0,&p)) < 10Epm. (3.1)
If m > & p /100, then clearly we have
A2(N(A,m) AN (20,E0p)) < T0(E0p)” < CoFopm, (3.2)

with Cp = 1007, so that (3.2) holds for all m, p. These numbers &, and Cy are
universal constants, that is, (3.2) is valid for all p > 0 and all i-arcs A of any
cps-mapping of any domain F which contains a disk N(zg, p).

Obviously, there is a cps-homeomorphism of D onto E if and only if there
is one onto F = v/A>(D) /A, (E)E. We show that there is a constant C’ such that
if F is a cps-homeomorphic image of D, for which

F DN(ZO,T), AZ(F) = AZ(D), 3.3)

then A, (0F) < C’/r. The desired result follows with Cp = C' /A (D).

Let D’ be any fixed Jordan subdomain of D for which D’ ¢ D and such that
A2(D\D’) < 1(&¥/2)2. On the basis of the a priori bound on the Lipschitz
constants for @ mentioned at the beginning of the first paragraph of the proof,
it is easy to see that there exists some integer K such that for each f € cps(D),
there is a set {Cy,C>,...,C;} of | < K j-arcs of f with the property that each
point of D’ can be joined to some point of their union by an i-arc of f of length
at most 1. We stress that K depends only on D’, and so is fixed, since D’ is.
The arcs Cy,Cy,...,C; themselves, of course, depend on f € cps(D).

Let f be an (m;,m;)-homeomorphism of D with m; < m;, for which F =
f (D) satisfies (3.3). It follows from the foregoing that all points of f(D’) are
within m; of Uizlf(Ck), that is, that

1
FD) c [JN(f(Cr),my). (3.4)

k=1
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Since A (F) = A2(D), it follows that m;m; = 1, so that

TT(EOV)Z_

A2(N(20,81)\f(D")) < A2(F\f(D")) = A2(D\D") < )

(3.5)

Thus,
A2(N(z0,&07) N f(D")) = 37"(507)2. (3.6)

Now, for each k, A = f(Cy) is a characteristic arc of g = f~! in F, so that
(3.2) holds with p = » and m = m;. But then by (3.4) and (3.6), 311 (&y7)?/4 <
CoK&om;r, so that m; = 3y /4CoK, and therefore, since m;ym; =1, mj <
4CoK /31 &pr. Since f increases lengths at most by a factor of mj, this bound
implies that A;(0F) = A (f(0D)) < C'/r, where C' = (4CoK/31E))A1(0D).
This finishes the proof of the theorem. |

4. Tangents to characteristics at boundary points. The main result of this
section, Theorem 4.1, tells us that any characteristic of a cps-homeomorphism
of a smoothly bounded domain D onto another such domain that meets 0D
does so at a well-defined angle. This is the key to most of what is to follow since
without knowledge of this fact we would, in effect, be limited to studying the
transformation problem for cps-mappings within the confines of artificially
imposed a priori hypotheses about regularity at the boundary.

Let D and D’ be Jordan domains, and let f be an (m,m>)-homeomorphism
of D onto D’. The mapping f obviously has a unique continuous extension
to a homeomorphism of D onto D’. Let K and K’ be open C! arcs of 0D, 0D’
which correspond to each other under f. Let C be a characteristic arc of f
which joins a point of D to p € K. It easily follows from Proposition 2.9 that
A1(C) < co. Let C be parametrized by z = w(s), 0 < s < gy, where w(o0y) = p.
For notational convenience we may assume, without loss of generality, that
p = f(p) = 0, and that the positively oriented tangents to both D and 0D’
at 0 point in the direction of the positive x-axis. Under these assumptions we
will prove the following result.

THEOREM 4.1. The limits of 0(w (s)) and ¢(w(s)) as s — oy exist.

Examples can be constructed to show that the smoothness of K’ is necessary.
Before beginning the proof, we establish the following lemma.

LEMMA 4.2, Iflims_,, 0(w(s)) does not exist, then there is some § > 0 such
that for all o < oy there are numbers s, < s, and s; < s, in (0, 00) such that

AO(w(s))w(s2)) =&, AO(w(s))w(s))) < -&. 4.1)
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PROOF. If (4.1) does not hold for any & > 0, then either

limsupAO(w(s;)w(s2)) <0  or liminf AO(w (s1)w(s2)) =0, (4.2)

$1,82—00 S1,52—00
where it is understood that s; < s». If, for example, the upper limit is nonposi-
tive, then the only way lim; ., @ (w (s)) could fail to exist would be for 6 (w (s))
to tend to —oo, in which case the curve C would ultimately be an infinite (in-
ward) clockwise spiral when traversed in the direction of increasing s, which is
incompatible with the hypothesis that w(s) — p € 0D. In the case of a nonneg-
ative lower limit we arrive at the same contradiction with a counterclockwise
spiral. O

PROOF OF THEOREM 4.1. Let C be an i-characteristic. To prove the theo-
rem, it is enough to obtain a contradiction from the assumption that the limit
of O(w(s)) does not exist since the existence of that of ¢(w (s)) will then fol-
low from (1.2). Furthermore, it is sufficient to assume that m; > m; since the
truth of the theorem in the opposite case will follow from consideration of
S

The curvature k(s) = d0(w(s))/ds exists a.e. on (0, 0y). It follows immedi-
ately from Lemma 4.2 and the fact that oy < o that for each k > 0 and each
o <0y

A({s € (0,00) : k(s) = k}) >0, AL({s € (0,00):k(s) <—k})>0. (4.3)

Now, for each s € (0,0¢) we denote by C; the entire open j-characteristic
arc passing through w(s). In addition, we denote by C; and C; the j-half-
characteristics emanating rightwards and leftwards from w (s), respectively.
These half-characteristics are considered to contain w(s) (and so are half-
open). On both C{ and C; we consider the positive direction to be that which
corresponds to movement away from C. Now, Proposition 2.1 tells us that at
each point s € (0,09) for which k(s) exists,

Al(C;)sL, if k(s) >0, )\1(C+)s—L if k(s) <O. (4.4)
K(s) : K(s)
From this, the fact that by (4.3) k(s;) — +c0 and K(SJ’-) — —oo for appropriate
sequences {s;}, {SJ’-} tending to oy and the fact that distinct j-characteristics
cannot intersect in D, it follows that

lim diam (C;) = 0. (4.5)

S—=00

Now let 5o > 0 be a density point of {s: k(s) > 0}. Let 0 < & <min{sy, 00— So}
be such that

Al({se(so—‘g,so+§):K(s)>0})>%. (4.6)
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Since by (4.3) so can be chosen arbitrarily close to oy, it follows from (4.5) that
we may in addition assume that

U{Cs:s0-E<s=s0+E} cN(p,R), “4.7)

where N(p,R)noD C K.Letz=v(s),0 <5 < p, be the arc length parametriza-
tion of Cs, & with v(0) = w(sg). For T > 0 sufficiently small, the characteris-
tic quadrllateral consisting of the translates of the i-arc w([so — &,s0 + &])
along the j-arc v([0,T)) exists, that is, lies entirely in D. Let 71 = sup{T :
QT exists}. Let C(s,5) give the standard characteristic coordinate mapping of

—&,50+&1x[0,71] onto Q, . It follows from (4.6) that for T < Ty, the lengths
of the translates of w([so—&,s0]) and of w ([so, S0 +&]) along Cs, down to v (T)
are at least &/2. From Proposition 2.8 it follows that C(s,T;) =lim._-, T(s,T)
exists for each s € w([so — &,s0 + £]). But then for some s;, C(s1,T1) € 0D,
since otherwise, by compactness, C([so— &,s0+ &],T1) C D, which contradicts
the definition of ;. If sg — & < 51 < 50, then at all points at which it exists the
curvature of the characteristic arc €(s1,[0,T;]) (with the positive sense corre-
sponding to movement away from C) is bounded above by 2/&, by what was
pointed out above about the length of the translates of w([sg,so+ &]). Simi-
larly, if 5o < 51 < 59+ &, then this curvature is bounded below by —2/&. From
Lemma 4.2 (together with its consequence (4.3)), it therefore follows that if s
is a density point of {s : k(s) > 0} for which (4.6) and (4.7) hold, then there are
points s; arbitrarily close to sy for which the limit of 0(z) as z approaches 0D
along Cj, exists. Obviously, the analogous statement (with CJ, replaced with
C;l) holds for density points of {s: k(s) < 0}.

We are now in a position to derive a contradiction from our assumption that
lim,_ 4, 0(w(s)) does not exist. It follows quite easily from what we have just
established, and from Lemma 4.2 and (4.3) that there exist n > 0 and sequences
{sk}, {tx} tending to oy for which

(i) sx < t,
(ii) the limits of 8(z) as z — 0D along C;;( and C{k exist,

(iil) AQ(w(t)w(sk)) <-n.

For each k let Ly be the curve C;, UEy U Cy,, where Ej is the subarc of C from
w(sk) to w(ty) (with the same orientation as C). Let py and gy be the points
at which C;;< and C;, meet oD. From (4.5) it follows that py,qx — 0. Let Ki be
the arc of D joining py and gqi; obviously, Ki C K for all sufficiently large k.

Let ¢ and Bi be the interior angles of the simple closed curve Ky U Ly at
pr and qi. Note that Ky might be {p}; in this case, &y is the angular size
of the sector containing Ci, which is bounded by Cjk and an arc of 0D, and
analogously for fx. We denote by «; and B, the interior angles of the image of
this simple closed curve at f(px) and f(qk). Then, by Proposition 2.5 we have

oG+ By = %(«xwﬁk)- (4.8)

13
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We consider that the simple closed curve Ky U Ly is oriented positively, with
the orientations of its arcs Ky, Cjk, C[k, and Ej taken accordingly. Let 6 denote
the change in the tangent direction along Ky, and let §; be the corresponding
amount for f(K). Upon taking into account that change in the argument of the
tangent along the characteristic arcs CJ,, E, C;, is simply the corresponding
change in 0 and the change in the argument of the tangent along their images
is the corresponding change in ¢, obvious geometric considerations tell us

that
AQ(Lk) :(Xk+Bk+6k, A¢(Lk) :(X;<+B;<+5;<. 4.9)
However, by (1.2) it follows that

A(Cr) = IAB(CE),  Ab(Cr) = 1IAN(C),  Ad(E) = %Ae(n).

(4.10)
By (4.8) and the fact that AO(Ey) < —n, we have
m. ’ 7 ’ ’
— (ot + Br) + 0 < o + B + 5,
m;
= A (L)
m; _ i mi
= E(AG(CU{) +A9(C§k)) + %AG(Ek)
- My mi ﬂ) (4.11)
T AO(L) + (m‘,- o) a0 (E)
) m2 —m?
< ﬂAQ(Lk) _ #n
m; m;m;
2 2
mi m; —m;5
= —L (o +Br+6k)———2
m; m;m;

Since ok, 5, — 0 as k — oo, this is a clear-cut contradiction, so that lim,_,, 0 (w (s))
must indeed exist. O

COROLLARY 4.3. LetD and D' be Jordan domains and let f be a cps-homeo-
morphism of D onto D’ under which open smooth arcs B and B’ of 0D and
0D’ correspond to each other. Let C and C’ be i- and j-characteristics of f,
respectively, which exit at p € B. Then, C and C' cannot cross in D.

PROOF. Assume for definiteness that C lies to the left of C’ (near p) and
that y = m;/m; > 1. Assume that the corollary is false and let g € CnC'nD.
Let the arc pg of C be parametrized by z = z(s), 0 < s < L, with z(0) = p.
Then the j-half-characteristic C’(s) emanating rightward from z(s) exits at p.
The simple closed curve E with sides C(s) = z([0,s]) and C’(s) has interior
angles B at p and 17/2 at z(s); the corresponding angles in the image are
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y and 17/2, where by Proposition 2.5 (1/u)B < y < up. Let the changes in 0
along C(s) and C’(s) be 6 and 6’, when E is traversed in the positive sense.
Then 6+6" =B+m/2and (1/u)d6+ud’ =y +1/2. But

m_1 = m_ m_
y+5—56—u6 —u(B+2 6)zy+u2 uo, (4.12)
which is impossible since § — 0 as s — 0. |

5. Boundary behavior of 0y and ¢ . In this section we show that if f is
a cps-homeomorphism of D onto D’ under which open C! arcs B ¢ 0D and
B’ c oD’ correspond to each other, then at each point p € B the functions 0
and ¢ are well-behaved, a fact that may be interpreted as indicating the extent
to which the cryptocrystalline nature of a solidified lamina persists right up
to its boundary. In the context of conformal mappings g, there is the theorem
of Lindelo6f (see [12, Theorem 10.1]), which says that in this situation, the ar-
gument of g’ has a continuous extension to D U B. We show that there is an
analogue of this theorem for cps-mappings, except that the possibility of jump
discontinuities in € and ¢ arises.

We begin with some notational conventions. First of all, when considering
the boundary behavior of f at p € B, it constitutes no loss of generality to
assume that D is a C' Jordan curve, so that in particular all characteristics
have finite length by Proposition 2.9. When discussing a characteristic C which
exits D at p, we use the arc length parametrization z = z¢ : [0,A;(C)] — D,
with z(0) = p. Here we are dealing with full characteristics, that is, z(A;(C))
is the other exit point of C. We denote the set of full k-characteristics exiting
at p by @, (f,p) or simply by € (p). Furthermore, x(C,p) € [0, 7] will denote
the angle formed by the characteristic C and 0D at p, specifically, x(C,p) =
arccos(z,(0) - v), where v is the positively oriented unit tangent to oD at p.
For a given cps-homeomorphism f of D onto D', we denote by E(f) the set
of all points of 0D at which some characteristic of f exits. An i-fan at p is
an &% C %6;(f,p) which is maximal with respect to the property that any two
characteristics in & are connected by a j-arc.

We define the HP-function 0(z) = 0(z, &g, &z, 0r,9.) as follows:

. T
XR, —§<T<(XR,
T, g < T < Xg +0i,
_ T
9(7"(3”) — ] O(R+6R, 0(R+5R <T< O(R+6R+E, (5.1)
T T
-rfg, o<R+6R+§s-rs1rfo<L,
3
Xgr+Or+0, M-, <T<=TI,

2
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where g, x;,0r,0r =0,

™
O(R+O(L+6R+5L= 3,
5.2)
mi m; m; mi s (
tan™! (—Jtan(xR) +—L6p+—6; +tan™? (—ltan(xL) =,
m; m; m; m;

Note that although we are primarily interested in 0 in the half-plane, we have
made the first sector (—71/2,&g), rather than (0, xg), and similarly for the
last sector, in order to accommodate points p € 0D at which the tangent line
contains points of D arbitrarily close to p. Furthermore, we define

P (2) = Pp(z, 0, 1,58, 61) = a(Z,BR,BL, %5}1, %5L>, (5.3)

where

m ,
Bg =tan! (—Jtanth), B =tan! (ﬂtanoq>. (5.4)
m;i m;j

It is easy to see that conditions (5.2) imply that there is a unique (m;,m;)-
homeomorphism h(z) = h(z, &g, xr,0r,0r) of the upper half-plane onto itself
with h(0) = 0, 05, = 0, and ¢, = ¢p. We prove the following theorem.

THEOREM 5.1. Let D and D’ be Jordan domains and let f be a cps-homeo-
morphism of D onto D’ under which open smooth arcs B and B" of 0D and 0D’
correspond to each other. Then for each point p € B, there exist &g, X, 0r,0r =0
satisfying (5.2) such that for some integers n and n’,

0r(z)-E-0(e ®z, o, 1, 5r, 1) — LS
2
. n'm (5-5)
br(z) & —ple ¥z, ar,01,08,01) — 5

asz — p in D, where e’ and e’ are the positively oriented unit tangents to dD
and oD" at p and f(p), respectively.

Here the correct ordering of m; and m; is such that the fans of f and h
“match up”; the integers n and n’ are necessary to compensate for the nor-
malization implicit in the definitions of 0 and ¢. The proof essentially amounts
to showing that f actually has fans matching those of 0 at each point of dD.
We accomplish this by first showing that if there is a characteristic C exit-
ing at p, then the corresponding fans exist, and that 6 and ¢ satisfy (5.5) at p;
there are, however, some technical complications in showing that these desired
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limits hold as z — p to the right (left) of the right (Ieft) fan. Then we show that
E(f) is dense in B and finally that E(f) nB is closed in B, from which it follows
that, in fact, E(f) D B. It is to be noted that E(f) D B is not at all obvious since
not all HP-nets on smoothly bounded Jordan domains have exiting character-
istics at all boundary points. For this reason the proof that E(f) nB is closed
in B does require a fairly lengthy argument.

We begin with several lemmas.

LEMMA 5.2. Letp € B, lete, — 0, let {Q,} be a sequence of nondegenerate
curvilinear quadrilaterals with vertices p, b = by, ¢ = ¢y, and d = d,, (in clock-
wise order), and let x = &, be the interior angle of Q,, at p. Assume furthermore
that

(i) pd CB,
(ii) pb and dc are i-characteristics and bc is a j-characteristic,
(iii) A (O(pb)), A1(0(bc)) < €n,
(iv) diam(Qpn) < €n,
(v) xe[0,1r/2].
Then A, (6(Qy)) — 0.

PROOF. In this proof we will in some instances suppress the subscript n;
this should cause no confusion. Let C = C,, be the complete i-characteristic
of which pb is an initial arc. Without loss of generality we can assume that
argzq(s) = 0(z¢(s)) + /2 and that the argument of the positive tangent to
oD at p is 0. Let 0,, = lim;_¢0(z¢(s)) = « — 1r/2. Note that in light of (v),
0,, € [0,—17/2]. If the conclusion of the lemma is not valid, then there is some
& € (0,1/10) such that for arbitrarily large n thereisa w = w, € Qu,and a &,
with & < |&,| < 2& for which

0(wn) =§n+§ns (5.6)
4282 [0(wa)| 2 5, (5.7)
| _ &

Passing to a subsequence, we can assume that these conditions hold for all n.
Let C’" be the maximal j-arc passing through w,, contained in Q,. It is clear that
for sufficiently large n, C’ cannot join a point of pb to one of cd since then it
would be the j-side of a characteristic quadrilateral whose opposite side is bc.
By the HP-property, this would imply that A, (6(C")) < €, by (iii), and therefore,
(also by (iii)) that for all z € C’, |0(z) — 0| < 2€,, which contradicts (5.6).

We next observe that for all sufficiently large n, C’ cannot have both of its
endpoints on pd. To see this, assume that C’ joins the endpoints of a subarc
E of pd C B and let ; and B: be the interior angles of the curvilinear bilateral
C’ UE. Then in light of Proposition 2.6 and (iv), f; and B> tend to 0 as n —
oo, so that for sufficiently large n they are both smaller than the number T,
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of Proposition 2.7. If there is some point u of C’ which is not joined to bc
by an i-arc in Q, then u would have to be joined to pd by an i-arc lying in
Q, but outside of C’ UE. But a simple application of Proposition 2.7 shows
that this cannot be. Thus C’ is the j-side of some characteristic quadrilateral
whose opposite side is on the j-arc bc. Then in light of the HP-property and
(iii), A1 (O(C")) — 0. But then, since B1,B2 — 0 and the tangent to 0D at p has
argument 0, the fact that |0(w,)| < 1/2 + 2& implies that 6(w,) — 0, which
contradicts (5.7).

Thus, for sufficiently large n, either

(1) C’ joins a point g € pd to a point t € pb, or

(2) C’ joins a point g € pd to a point t € dc.
We claim that in either of these cases A;(0(C")) — 0 as n — 0. Let C’ be
parametrized by w(s), 0 <s <1 =1l,, with w(0) = t. If for all 5, w(s) is joined
to bc by an i-arc, then, as above, by the HP-property and (iii), A1 (0(C")) < €.
Thus assume that there is some s for which w(s) is joined to pd by the i-half-
characteristic emanating from C’ leftwards in case (1) and rightwards in case
(2), and let o = 0, be the smallest such s. Then, as before, A1 (0(w([0,01))) <
€n. Also, the complete i-characteristic through w (o) must join two points of
pd in Q, and it is clear that the same must be the case for the complete
i-characteristic through all w(s) for o < s < L. Let F be the i-characteristic
through w(n), for some n € [0,1), and say that it joins the endpoints p; and
p2 (in this order when pd is traversed positively) of an arc E C pd. Let F be
parametrized by C(s), 0 < s < p with €(0) = p;. By taking into account that by
Proposition 2.6 the interior angles B; and S, of the bilateral E U F at p; and
p» must tend to 0 as n — oo, it follows from Proposition 2.7 that d0(C(s))/ds
must be uniformly bounded above by some number T; > 0. From this it easily
follows that for s; < s>, we must have 6(C(s2)) < 0(C(s1)) + 2€,T1, for n suffi-
ciently large. But then the minimum of 6(Z(s2)) — 0(C(s1)) must also tend to
0 as n — oo, since |AO(p1p2)| tends to 0. Thus, we indeed have that

6n=A1(0(C")) — 0, asn— o. (5.9)

In case (1) we have a contradiction since A; (0 (tw,)) — 0, together with (iii),
implies that 6(w,) — 0, — 0, which is impossible in light of (5.6). In case (2)
for sufficiently large n, 0(wy) — 0,, = &, > 0, since if &, > 0, C’ would meet
pb because A, (0(C’)) — 0. Replace €,, by max{€,,d,}.Let L =C(s),0<s <L,
parametrize dc with €(0) = d. Let t = C(s¢). Then argc’(sy) is within €,, of
0+1/2 + &,. Since the inclination of dc at c is within 2¢, of 6 + /2, there
is a subinterval [s1,s>] of [so,L] on which that arg ' (s) varies from 0 +7/2 +
£, — €, t0 0 +17/2 + 2€,. Since by (iv) C([s1,s2]) is contained in N(pb,2¢,),
the length of the arc C([s;,s2]) is certainly less than 10¢€,. Therefore, there is
a point on this arc at which the curvature is least (£ — 3€,)/10¢, and at which
dc is convex towards the inside of Q,. This implies that the full characteris-
tic containing C’ intersects 0D at a point e outside of Q,, at distance at most
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3€n +10€, /(€ —3€,) — 0 from p. However, by Proposition 2.6, the interior an-
gles of the bilateral formed by C’ and the arc ge of 0D tend to 0. But this is
inconsistent with the facts that the inclination of the tangent to C" at w,, is
bounded away from 0 and 6,, = A1 (8(C")) — 0. This is the desired contradic-
tion. |

LEMMA 5.3. Let f have ani-fan % at p € oD. If ¥ has a rightmost (leftmost)
characteristic C for which 0 < x(C,a) < (11/2)(11/2 < x(C,p) < 1). Then 0(z)
has a limit as z — a in D to the right (left) of C.

PROOF. For definiteness we deal with the rightmost characteristic case, the
leftmost case being treated analogously. For each positive integer n there is
a point b, € C such that A;(pby), A1(0(pby,)) < 1/n. Let C’ be the j-half-
characteristic emanating rightwards from b,,, parametrized by € = C(s), with
C(0) = by.Let C(s) denote the i-half-characteristic emanating rightwards from
C(s). Then, since C is the rightmost characteristic in %, there is an sy > 0 such
that p ¢ C(s) for s € (0,s0], and, by making so smaller if necessary, we can
assume that A, (0(C[0,50])) < 1/n. We claim that for all sufficiently small s,
C(s) C N(pbyu,1/n).Indeed, were this not so, it would follow from simple con-
tinuity properties of the solutions of ordinary differential equations that there
is some n > 0 such that for all € > 0 there is a o € (0,¢) for which C(o) has
a subarc E(o) C N(pby,,1/n) which joins C(o) to a point g within € of p and
another subarc E’ (o) which joins g to apoint» € D\N(p,n).But thenitis easy
to see that there must be a point t € E'(0) N N(7,2¢€) at which the curvature
is greater than 2/n and C(o) is concave towards the left side (as one moves
away from C (o)) since otherwise for sufficiently small €, the corresponding
E’'(0)nN(7,2€) would be virtually straight lines and would intersect 0D, con-
tradicting the existence of the point g. But the j-half-characteristic emanating
to the left of this C (o) from t would have to intersect C(o’) in another point,
which is impossible. Let ¢,, = T (s), where s < 5o and C(s) C N(pby,1/n), and
let d,, be the point at which C(s) exits D. The desired conclusion now follows
from a simple application of Lemma 5.2. O

LEMMA 5.4. Let f have an i-fan & at p € oD. If inf{x(C,p) : C € F} =0
(sup{x(C,p) : C € F} = 1), then for any € > 0 thereisaC € Fanda é > 0
such that A (0(GNN(p,5))) < €, where G is the part of D to the right (left) of C.

PROOF. It is sufficient to handle the case in which inf{x(C,p): C € ¥} = 0.
Let C € ¥ be such that x(C,p) < €. Without loss of generality we can assume
that argz;(s) = 0(z4(s)). Let C’(s) denote the j-half-characteristic emanat-
ing to the right of z¢(s) considered as oriented from z¢(s) towards 0D. We
consider two cases.

CASE 1. For each sufficiently small € > 0, there is an so = so(€) < € such that
all points of C’(s) are joined to p by an i-arc for all s < sy. Then it is easy to see
that A1 (0(C’(s))) < €, and in fact that for s < 5o, C'(s) is everywhere concave
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towards p and that the curvature at all points of C’(s) is asymptotic to 1/s as
s — 0. From this it follows for sufficiently small €, that T = U{C'(s) : s < sp}
contains a set of the form G N N(p,d) as in the statement. But A, (0(T)) <
A1(0(z(0,50))) +€ < 2¢, for sufficiently small €. Thus the lemma is established
in this case.

CASE 2. For arbitrarily small € > 0 there are arbitrarily small s such that
there are i-half-characteristics emanating rightwards from C’(s) which do not
exit at p. In this case for each positive integer n, pick a particular such € < 1/n,
and a corresponding s < 1/n for which A;(8(pzc(s))) < 1/n and such that
there are i-half-characteristics emanating rightwards from C’(s) which do not
exit at p. Let b,, = z¢(s). Then, it is easy to see that there is a ¢, € C'(s) such
that the i-half-characteristic emanating rightwards from c,, exits D at a point
dy # p and such that ¢, d,, € N(p,2/n). The desired conclusion now follows
easily from Lemma 5.2. O

LEMMA 5.5. Let C,C" € Ci(f,p) be joined by a j-arc A. Then the length of
the translate of A downtoq € C tends to0 asq — p.

PROOF. Let A be parametrizedby w =w(s),0<s < L,withw(0) € C. Since
each point of A is connected to p by an i-arc between C and C’, it is clearly
enough to show that the conclusion is valid under the additional assumption
that A1(6(A)) < 1/10. But then, if the length of the translates of A does not
tend to 0, there is a j-arc joining p to a point of C’, which is impossible by
Corollary 4.3. O

It follows immediately from this lemma and the HP-property that for a fan
F, {x(C,p) : C € F} is an interval. The length of this interval, which gives the
angular aperture of %, will be denoted by 6 (%). It also follows from this lemma
that if i-characteristics C, C’, and C” exit at p and the pairs C,C’ and C’, C" are
joined by j-arcs, then so are C and C”. The following is also a straightforward
consequence of Lemma 5.5.

LEMMA 5.6. Let % be a fan of f atp € D and let C,C’ € &. Then, there is an
integer n such that 0y(z) —arg(z—p) — n1/2 as z — p in the closed subregion
of D between C and C'.

LEMMA 5.7. Let f have an i-fan % at p € oD. If the infimum of x(C,p) > 0
(supremum of x(C,p) < 1), then F has a rightmost (leftmost) characteristic.

PROOF. We consider the rightmost case. Let 8 be the lower endpoint of the
interval {«(C,p) : C € ¥}. Obviously, we can assume that for all € > 0 there
is a C' € & with «(C’,p) = B + € since otherwise the interval would be {f}.
Let C” be the j-half-characteristic emanating rightwards from z¢ (sg), where
So < € is so small that A1(0(z¢c(0,89))) < €. Let w = w(o), 0 < o < L, be
the arc length parametrization of C”, with w(0) = z¢(s¢). Let E(0) denote
the i-characteristic through w (o). If E(o) exits at p, then E(0’) exits at p
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for all o’ € [0,0] so that for all such o', E(0’) € %. From this we conclude
that if E(o) exits at p, then A (0(w([0,0]))) < €. But then for € sufficiently
small there is a 0y < L for which E(o) does not exit at p. Indeed, if this were
not so, then as € — 0 we would have curvilinear triangles with right angle at
w(0), such that along each of the three sides the inclination of the tangent
is contained in an interval of length € (making them virtually straight line
segements), and such that the angle at p tends to 0. However, it is clear that
the ratio of the length of the side opposite to p to that of the side z¢ ([0, s0]) is
bounded away from 0, which is obviously inconsistent with these conditions.
The desired rightmost characteristic is then the one containing E (o), where
o1 =sup{o :E(0) exits at p}. O

PROOF OF THEOREM 5.1. Say we have an i-characteristic C exiting at p;
without loss of generality, we can assume that p = 0 and that the positively
oriented unit tangent vector at p is 1. We also assume that 0 < &x(C,p) < 11/2,
the opposite case being handled analogously. Obviously, there is an i-fan %; at
p.Letl; = {x(C,p) : C € F;}.By Lemma 5.7, %; will have a rightmost (leftmost)
characteristic unless the lower (upper) endpoint I; is O (17). In the case that the
lower endpoint is 0, we define &z = 0; otherwise, we define it to be x(C,p),
where C is the rightmost characteristic in %;.

Let 6g = 6(%;). Then we have 6 + &, < 11/2. To see this, say g + &, > /2.
We denote by «; the angular size of the sector lying to the left of %;. It follows
from Lemmas 5.3 and 5.4 that the limit of 0(z) as z — p in each of these
sectors exists. Then og,; < 1/2 and & + g + g = M. Let u = mj/mi. It is
clear from (1.2), together with Lemma 5.6, that 6 (f(%;)) = udg. In addition,
simple trigonometry, together with Lemma 5.3, implies that the inclination of
the image of the rightmost characteristic of %; is tan~! (utan og) and similarly
for the image of its leftmost characteristic. It therefore follows that

tan! (utanc, ) +tan~! (utan o) + pdg = 1. (5.10)

(Minor modifications show that this equation remains valid in the cases where
no rightmost and/or leftmost characteristic exists.) This is clearly impossible
since for u < 1 (u > 1), apart from trivial exceptions, all three terms on the
right-hand side of (5.10) are, respectively, less (greater) than g, , 0. In fact,
Or + &g < 11/2, unless we are in the “degenerate case” in which o = 11/2 and
Or = 0, which we discuss at the end of the next paragraph.

First, we assume that g + &g < 17/2. In this case there is a j-characteristic
emanating from p and orthogonal to the leftmost i-characteristic in %;. To
see that such an orthogonal characteristic exists, let g be a point of the left-
most i-characteristic of %; (near p) and let A be a (short) j-arc emanating
from g away from %;. Then the length of the translates of A along this i-
characteristic towards p are bounded below (and lie in D), since otherwise this
i-characteristic would not be the leftmost one in %;. A simple limit argument
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then gives the required j-characteristic J. It follows from a simple argument
based on Corollary 4.3 that no j-characteristic to the right of J exits at p, so
that J is the rightmost characteristic of a j-fan ;. Let 6, = 6(F;) and let «,
be the acute angle between 0D and the leftmost characteristic of &; if such
exists, or O otherwise. The limit relationship between 60, ¢ and 0, $ follows
from Lemmas 5.3, 5.4, and 5.6, together with simple trigonometry and (1.2).
In the degenerate case we have g = 71/2 and g = 0. But then it follows from
Lemma 5.3 that the desired limits exist.

Next, we show that E(f) is dense in B. Let p € B and let € > 0 be such
that N(p,2€) noD cC B. If 0 is Lipschitz continuous in N(p,€), then it is easy
to see that there are characteristics exiting at all points of BN N(p,€). On
the other hand, if 0 is not Lipschitz continuous in N(p,€), then one of |D; 0|
or |D>0] must be unbounded there, so that some characteristic must exit in
N(p,2€)noD C B.

Finally, we show that E(f) is closed in B. Let {p,,} be a sequence of distinct
points in E(f) which converge to p € B. It follows from the above construction
that there is a 6 > 0 such that for each p, there is a characteristic C,, exiting
at p,, for which 6 < «(Cy,,pn) < 1™— 6. By passing to a subsequence, we can as-
sume that all of the C,, are i-characteristics. Similarly, we may assume that the
pn tend monotonically to p from one side; for definiteness, say from the right.
Let C,, be parametrized by z = z,(s), 0 < s < oy, with z,,(0) = p,,. We regard
C, as including its end points. In light of Proposition 2.6, the distance between
the endpoints of the C, is bounded below by some ¢( > 0. Since {C,,} is a fam-
ily of compact sets, some subsequence, which for convenience we continue to
call {C,}, converges to a set S ¢ D with respect to the Hausdorff metric

d(X,Y)=inf{p: X CN(Y,p), Y C N(X,p)}. (5.11)

It is easy to see that S is a connected compact set consisting of a union i-
characteristics (without their endpoints) and a closed subset E of 0D and that
p € E. If p is not an accumulation point of E, that is, if dist(E\{p},{p}) >
0, then there is an i-characteristic of f joining p to E\{p}, so we are done.
Thus we may assume that there is a sequence {r, } of distinct points of E\{p}
monotonically approaching p, and from this we obtain a contradiction. Because
the p,, lie to the right of p, the C,, move to the left, so that the points of E (near
p) lie to the left of p, and thus the 7, lie to the left of p.

We now focus on an individual 7 for which |1y — p| < €9/10 (wWhere € is
the lower bound for the distance between the endpoints of the C,) and such
that the inclination of the tangent to 0D along the (short) arc 7y p is less than
1/100. Let u,, = z,(s,) be a point of C,, which minimizes distance to %, so
that u,, — 7. Note that

N (vk, |un —7¢|) lies to the left of Cy, (5.12)
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since if this were false for some ng, Cy, would have to exit D between 7} and
p, and consequently all the C, for n > ny would be contained in the region
bounded by Cy, and an arc of 0D joining p to a point between ¥, and p,
contradicting the assumption that 7 € E. Consider the strip S;,, of width |7y —
p|/5 whose sides have the normal direction of 0D at 7y and whose centerline
passes through u,, and let W,, be the arc of C,, which joins two points of S,
and passes through u,. For w € W,, let A,, denote the j-half-characteristic
emanating to the right of C,. We have

e —
Al(Aw)27| k1op|’ (5.13)

for n sufficiently large, since any A,, for which this is not true would cross C,
twice. Furthermore,

10

|1’k—17|

forzeAme(w,“’kliBm), (5.14)

|DJ'9(Z) | <
for all w € W, n > n,, since, otherwise because |1y —p| < €9/10, there would
be an i-characteristic emanating from A,, which crosses C,, a contradiction.
In addition, it follows from (5.13) that

d@(zn(s))>_ 10
ds ~ ne-pl

, forz,(s)ew, (5.15)

for n sufficiently large; that is, for such n the curvature of C,, towards the right
is uniformly bounded. Now, from (5.15) and the fact that the subarcs of W,, on
either side of 1, have length bounded below by |7 —p|/10 and do not touch
0D, it follows that for all p > 0, there is an € > 0 such that

arg(%)‘ <p or ’arg(%)fn’ <p}, (5.16)

for sufficiently large n, where & is the positive unit tangent to 0D at 7. From
(5.14) it follows by compactness that there is a subsequence of {A,,} which
converges to a j-characteristic C, emanating from 7;; from (5.16) it follows
that «(Cy,7x) = 1/2. Since all the C,, must cross Cy, it follows that for all
p > 0 there is an € > 0 such that (5.16) holds with u,, replaced by the point
of intersection of C;, with W,. This in turn implies that the image of oD is
orthogonal to the image of C;, at f(#%).

We can now use our familiar angle change argument on a positively oriented
curvilinear triangle made up of the part of C, between p, and t,x € Cy, the
Jj-arc ty 7k, and the (short) boundary arc from #, to p,. If the changes in the

N(up,e) "W, C {z:
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tangent inclination on these pieces are «, B, y, respectively, and the corre-
sponding changes in the images are o, ', y’, and the interior angle at p,, is T
with a corresponding image angle 7', then B, y, B’, and y’ can be made arbi-
trarily small for k and 7 sufficiently large. But T = 6 > 0 and o = (m;/m;)«,
so that we get a contradiction with Proposition 2.5 since

x+B+y=T1, +p+y =T (5.17)

This finishes the proof of the theorem. |

Before ending this section, we mention the following simple consequence of
Theorem 5.1 or, more precisely, of its proof.

COROLLARY 5.8. Let D and D' be Jordan domains with smooth boundaries,
and let f be a cps-homeomorphism of D onto D’. Then, there is an at most
countable set S C 0D such that Oy and ¢y have continuous extensions to D\S.

PROOF. Let S denote the set of points p € 0D at which lim,_, 0¢(z) or
lim,_, ¢ r(z) fail to exist (as numbers). From the preceding considerations, it
follows that for each p € S, 6;(p) +6;(p) > 0, where 6, (p) denotes the angular
size of the k-fan of f emanating from p. Let & be one of these fans with angular
size 6 > 0. Let ¥ consist of all C € & for which x(C,p) > 6/2, other than the
leftmost and rightmost characteristics of %. The angular size of this subfan
F" of F is at least 6/2. It follows from Proposition 2.6 that thereis a y = y(9)
such that A;(C) = y for all C € . For p € S for which §;(p) > 0, let F(p)
denote the corresponding subfan and let E;(p) denote the corresponding set
of second exit points. Then,

A (Ei(p)) =6:i(p)y(8:(p)), Ei(p1)nEi(p2) for py = po. (5.18)

From (5.18) it follows that

2

> D Skp)y(Sk(p)) <2A:(3D), (5.19)
k=1peS
so that S is indeed at most countable. O

6. cps-self-mappings of the half-plane. In this section we use Theorem 4.1,
together with an appropriate uniqueness argument, to completely determine
the class of all (m,m>)-homeomorphisms f of the upper half-plane H = {z:
9z > 0} onto itself. We do this by showing that for all such f, 8 = 0, has
well-defined values on R = 0H and that these values are essentially nonchar-
acteristic in the sense that, disregarding simple exceptions, the initial values of
0 (may be taken to) lie entirely in one of the intervals (0,7r/2) or (7t/2,1r). This
reduction to a well-posed initial value problem is not straightforward since we
do not know without the considerations of Section 5 that 0 is even bounded in
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a neighborhood of each point of R. Throughout this section f will denote an
(m1,my)-homeomorphism of H onto itself. We begin with a series of lemmas,
the first of which is the key to the succeeding analysis.

LEMMA 6.1. The mapping f does not have any doubly exiting characteristics.

PROOF. Assume, to the contrary, that f has a doubly exiting i-characteristic
C. By the remark immediately following the proof of Proposition 2.6, C must
have distinct endpoints a < b. If « and B are the interior angles of the simple
closed curve C U [a,b] at a and b, then it follows from Proposition 2.6 that
o= =0.For z € C, let C] be the j-half-characteristic emanating from z and
lying in the exterior of CU[a,b]. There is a point w € C at which C is concave
towards the exterior of CuU [a,b], so that C,, joins w to a point u of 0H. By
Corollary 4.3, u < a or u > b. If u < a, then for all z € aw C C, the same
corollary implies that C, joins z to a point of (—o,a); in the opposite case for
all ze bw c C, C} joins z to a point of (b, ). Application of Proposition 2.7
then gives a contradiction for z sufficiently close to a in the first case or to b
in the second case. U

LEMMA 6.2. Let C be a characteristic arc of f given by z = z(s), 0 < s < L.
Then, k(s) = dargz’'(s)/ds has a single sign on (0,L); that is, k(s) = 0 a.e. on
(0,L) or k(s) <0 a.e.on (0,L).

PROOF. If the conclusion were not true, then by Proposition 2.1 there would
be s*,s~ € (0,L) such that the orthogonal half-characteristics C* issuing from
pt = z(s") to the left of C and C~ issuing from p~ = z(s7) to the right of
C join p* and p~ to points a* and a- of R. We assume that s* < s—, the
opposite case being handled similarly. Let C’ denote the closed subarc p*p~
of C. Let D denote the interior of the simple closed piecewise smooth curve
[at,a"]uCTYuC~u . If the right-hand side of C faces the interior of D,
then by Proposition 2.8 the half-characteristic E orthogonal to C issuing to the
right of p* intersects 0D. Since ENC = {p*} and E cannot touch the interior
of either C*or C~, E must meet [a*,a”] C dD. But then EuUC™ is a doubly
exiting characteristic, which is impossible by the preceding lemma. If D is on
the left-hand side of C, then an analogous argument produces a doubly exiting
characteristic passing through p~—. |

LEMMA 6.3. Any nonexiting characteristic C must be a horizontal straight
line.

PROOF. Clearly, if C is a nonexiting straight-line characteristic, it must be
horizontal. Thus, it is sufficient to show that the curvature is identically O on
any nonexiting characteristic. Assume, to the contrary, that this is not the case
for some such i-characteristic C given by z = z(s), —c0 < § < o. Since by the
preceding lemma argz’(s) is monotone on (—oo, c0), there are two cases:

(i) argz’(s) is unbounded in at least one direction,
(ii) argz’(s) is bounded in both directions.
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In case (i) it is easy to see that at one end or the other, C must have an infinite
inward spiral, which is clearly impossible. In case (ii) C is a U-shaped curve each
end of which must extend upward or at worst be horizontal. Thus there must
be some point p on C with nonvanishing curvature at which C is concave to-
wards the inside of the U. But then by Proposition 2.1, the j-half-characteristic
C’ emanating from p into the U must join p to 0H. But this implies that C’
intersects C in two points, which is impossible. O

LEMMA 6.4. If f has a nonexiting characteristic, then f must be affine with
horizontal and vertical characteristics.

PROOF. If f has a nonexiting i-characteristic C, then by the preceding
lemma it must be a horizontal straight line. Let C’ be any orthogonal char-
acteristic. If the tangent to C’ were nonvertical at any point p € C’, then the
i-characteristic through p would be a straight line intersecting C, an obvious
contradiction. Thus, C’ is a vertical line, so that the two families of characteris-
tics are given by Rz = const and Jz = const, from which the desired conclusion
follows immediately. O

Since this lemma gives a complete description of all f possessing a nonex-
iting characteristic, for the remainder of this section, unless otherwise stated,
we assume that all characteristics exit, and so, in light of Lemma 6.1, we as-
sume that they exit exactly once. Each characteristic C will be parametrized by
z=17¢(5),0<s < o0, s0 that &¢ = arg Z-(0) is the angle formed by C with the
part of R to the right of C. We adopt the convention 0 < x¢ < 1. Furthermore,
each characteristic splits H into two pieces. Since characteristics belonging to
the same family never cross in H, it makes sense to speak of a characteristic as
lying to the right or left of one belonging to the same family. Obviously, C; lies
to the left of C; if and only if Z¢, (0) < Z¢, (0). Since by Lemma 6.2, arg Z(0)
is monotonic, it follows that

xc<argZ-<m forall s €[0,) (6.1)
or
O<argZ;, < forallse[0,00). (6.2)

Were this is not so, we would have a doubly exiting characteristic, which is
impossible by Lemma 6.1, or a characteristic with an infinite inward spiral,
which is also impossible.

LEMMA 6.5. If C is a characteristic of f, then all of the orthogonal charac-
teristics must exit in the same component of H\C. In fact, this component is the
right-hand one if arg Z-(s) € [0,71/2) for some s = 0 and the left-hand one if
argZ;(s) € (1r/2,m] for some s = 0.
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PROOF. Let C be an i-characteristic. The first sentence follows easily from
Lemma 6.1, as in the proof of Lemma 6.2. For the second conclusion, assume,
for example, that argZ;(s) € [0,71/2) for some s > 0. Let C’ be the j-half-
characteristic emanating to the right of Z-(s). If C’ does not meet 0H, then
simple geometric considerations imply that as we move along C’ away from
Z(s), there will be some point p at which C’ is concave to the left. But then
the i-half-characteristic emanating leftward from p must meet 0H but at the
same time is trapped inside the infinite subregion of H bounded by {Z/- (o) :
o > s} U(C’, which is a contradiction. Therefore, C’ must meet 0H. |

If x¢ =0, then because of the monotonicity of arg Z;, this function would
have to be nondecreasing and not constantly O on [0, ). That is, C would
have to be concave to the left. But then Lemma 6.5 and Proposition 2.1 would
together imply that some orthogonal characteristic exits on both sides of C, in
contradiction to Lemma 6.1. We obtain a similar contradiction if &¢ = 1r. Thus,

0<oac<m forall C. (6.3)

We denote by %; family i-characteristics of f.

LEMMA 6.6. Either for all C € %; all orthogonal characteristics exit to the left
or for all C € %; they exit to the right.

PROOF. If not, then we would have C; and C, in %; with orthogonal charac-
teristics exiting to the left and right, respectively. If Z¢, (0) < Z¢, (0), thenlet C;
and C; be infinite j-half-characteristics emanating from C; and C, with initial
inclinations in [0,77/2) and (7t/2, 7], respectively. The only possibility is that
the inclinations are 0 and 7t since otherwise they would cross. But then they
must be horizontal lines since otherwise we would have doubly exiting char-
acteristics. Appropriate downward translates of these lines will then coincide,
which again produces a doubly exiting characteristic. Thus Z¢, (0) > Z¢, (0). In
this case the only possibility is that C; and C» are vertical lines, since otherwise
they would cross. Let p € C;.If the j-arc C through p crossed C», then it would
exit both to the left and to the right of C,, making it a doubly exiting charac-
teristic. Therefore, it must exit in [Z¢, (0), Z¢, (0)). But then if we translate the
part of C; above p downward along C, we will obtain i-arcs which are rays
with inclination in (7t/2, 77), which will necessarily cross C». This is impossible
since distinct i-characteristics cannot cross in H. O

LEMMA 6.7. Let C;,C> € &F; with ZC1 0) < ZCZ (0). Then Xy = XGy-

PROOF. We prove this for the case in which for all C € %;, the j-characteris-
tics crossing it exit to its right, that is, in which all of the characteristics in %;
are concave to the right; the opposite case is handled analogously. If C; is a
vertical line, then C; must be one too since otherwise C; would intersect C>,
so that a¢, = x¢, = /2. We therefore assume that C» is not a vertical line. It
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follows from the preceding lemma that the characteristics in %; are concave
to the left. By assumption the j-half-characteristic E’ emanating to the left
of C; from Zc, (s) is infinite and must therefore intersect C; at some point
Zc, (s"). Since E’ is concave to the left, we have x¢c, > argZé1 (s') = arg Z'C2 (s).
The desired conclusion now follows since arg Z¢, (s) — «c, as s — 0. O

LEMMA 6.8. Let Cy € &%; and assume that all j-characteristics which cross
Co exit H to the right of Cy. If Cy exits H at xy and x < X, then there is an
i-characteristic of f which exits H at x.

PROOF. First of all, it is easy to see by a simple compactness argument that
the set E of exit points x < x¢ of C € ¥; is closed in R. If E # (—o0,x(], then
there is some x7 < x¢ in E, such that (x»,x1) NE = &, for some x» < x7. Let
C be the leftmost i-characteristic exiting at x;. Let the j-half-characteristic
C; emanating leftward from Z¢(s) be parametrized by ws(o), o = 0. Then it
is easy to see that the i-characteristic through w; (o) will exit H at a point
x =+ x arbitrarily near x; for s, > 0 sufficiently small, which contradicts the
definition of x». O

We are now in a position to obtain a description of the initial values of 6 = 0
and ¢ = ¢ . It follow from Lemma 6.6 that with appropriate choice of i and j,
all j-characteristics passing through a point of any i-characteristic C exit to the
right of C, and oppositely when i and j are reversed. Thus from Lemma 6.5,
we conclude that

oc € <0, g] for all C € %;, oc € [%,ﬂ) forall C € F;. (6.4)
Obviously,
all C € %;(C € ;) are concave to the right (left). (6.5)

For C € %; we work with the angles «¢ and call them 0*(x), where x € 0H
is the point where the C exits. If we define 6* (x) to be 0 for all x for which
there is no C € ¥; exiting at x, then Lemmas 6.7 and 6.8 imply that 0* is a
nonincreasing function on all of R = 0H; at the jump points of 0* there are
fans of exiting characteristics as described in Section 5. For definiteness we
take 0* to be continuous from the right. From the considerations of Section 5
it follows that there is at least one exiting characteristic at each point of 0H,
so that in light of the concavity of the characteristics and the monotonicity of
0%, there are three intervals I /2, I, Iy on which the function 6* (x) takes only
the value 17/2, only values in (0,77/2), and the value 0, respectively. Any of
these three intervals may be empty; in fact, the only thing that cannot happen
is that 0H = I;» or 0H = I, since in the former (latter) case it can easily be
seen that all j-characteristics (i-characteristics) would be horizontal. Finally,
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if f is of the form m;x +m;y +xo or m;x +m;y + xo, then we regard 0* as
being identically O or 717/2, respectively, on all of 0H.

THEOREM 6.9. If f is a cps-homeomorphism of H onto itself, then the func-
tion 0* = 6}“ on 0H = R defined in the preceding paragraph (i) is nonincreasing,
(i) is continuous from the right, and (iii) has all of its values in [0, 11 /2]. Further-
more, given any such 0* and any m,, mp, there is a unique (m,m»)-mapping
f for which 05 = 0* and f(0) = 0.

COMMENT. This theorem says that the class & of cps-homeomorphisms f
of H onto itself with principal strains 71; and m, and for which f(0) = 0 can be
decomposed as A = A1 Uy, where «f; N, consists of the two linear mappings
myx +mey and mox +m;y, and where there is a one-to-one correspondence
between each s; and the set of functions satisfying conditions (i), (ii), and (iii)
of the statement of the theorem. Here «; consists of the mappings for which
the characteristics corresponding to stretch factor m; are concave to the right.

To finish the proof of Theorem 6.9, we need to show existence and unique-
ness of the f corresponding to a given 6*. To establish existence, we initially
let 6* be a strictly decreasing C®-function with values in some compact subin-
terval I of (0,77/2) and let

P*(x) = arctan(%tan@*(x)). (6.6)
1

By well-known existence theorems for hyperbolic systems, there exists a C*®
solution 6, ¢ of (1.2) in some neighborhood of R with initial data 0*, ¢*. Now,
for such 6, ¢,

Oy = (cos0)D,0—(sin0)D-0,

5 6.7
¢Px = (cosO)D1¢p— (sin0)Dr¢p = m(cos 0)D,10 - ﬂ(sin@)DZQ. (6.7)
mp my
From (6.6), it follows that on R = 0D there hold
6, m5 sin’ 0
D0 = <0,
"7 (m3 cos? 0 +m3 sin? 0) cos 0

. (6.8)

D0 = — 0,mjcos- 6 50

(m?cos20+m3sin®0)sin@ ~

so that the 1-characteristics are initially concave to the right and the 2-charac-
teristics are initially concave to the left. But then as we move upward away from
O0H along the characteristics, the solution has decreasing |D; 0| and |D» 0|, and
furthermore from the concavity of the characteristics, it follows that we always
have 0(z) in I. Thus, we can extend the solution little by little into all of H with-
out any singularities developing. By the assignment (6.6) of ¢p* the mapping f
for which f(0) =0, 0y = 0 and ¢ = ¢ is an (m;,m2)-homeomorphism of H
onto itself.
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Now let 0* be any nonincreasing function on R with values in [0, 77/2] which
is continuous from the right, and let {0,}} be a sequence of strictly decreasing
C>-functions such that 0, (R) c (0,7r/2), and such that for each a < b,

b
J |0k (x)-0*(x)|dx — 0 asn— o, (6.9)
a

Let (0,,¢n) be the solution in H of the initial value problem for (1.2) with
initial data 6} (x) and ¢} (x) = arctan((m,/m;)tan 6} (x)), and let f, be the
corresponding mapping of H onto H with f;,(0) = 0. By the compactness prin-
ciple, some subsequence of {f,}, which for convenience we continue to call
{fn}, converges locally uniformly on H to an (1, m>)-homeomorphism f of
H onto itself. Since

afna(;c 0 _ (13 cos? 03 (x) +m3sin? 0, (x))?, (6.10)

it follows from (6.9) that

f(b) = f(a) = lim f, (b) - fu(a)

b

= lim | (mfcos® 05 (x) +m3 sin® 0; (x))"*dx 6.11)

= Jb (m? cos? 0* (x) + m3sin® 0* (x))"*dx,
a

so that d.f(x,0)/dx = (m? cos? 0% (x) +m3sin® 0* (x))'/2 a.e. on R. Because 0*
is continuous from the right, it therefore follows that 9}“ (x) = 0% (x) for all
x € R, as desired.

Finally, we have to show that given any such function 6* on R, together
with its companion function ¢* (x) = arctan((m,/m,)tan0* (x)), the corre-
sponding (m,,m>)-self-homeomorphism f of H with f(0) = 0 is unique; in
other words, that the functions 0 and ¢ in H corresponding to these bound-
ary functions are uniquely determined in H. This is not completely obvious
since 0* and ¢* may not be Lipschitz continuous (nor even continuous for
that matter). We deduce uniqueness by “spreading out,” in effect, the initial
line so as to transform the given problem into a standard Cauchy problem
with Lipschitz data.

We begin by proving uniqueness (in the domain of dependence of [a,b])
under the assumption that 6* ([a,b]) C (€,1m/2 —€) for some € > 0, that 0* is
nonincreasing, and that it is continuous at a and b. The general case follows
easily from this, as we indicate below.

Let O(a) = x = B = 6(b). Without loss of generality, we can assume that
a=0.Let O(x) = x—0*(x), so that 0 is nondecreasing on [0, b] with values in
[0, x— B]. Let P denote the countable set of points of [0, b] at which this func-
tion has jumps, the jump at p being denoted by 6(p) = 61(p) + 62(p), where
01(p) and 92 (p) are the angles of the associated fans of 1- and 2-characteristics
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emanating from p (see Section 5). Foreachn > 1,letO0=ap<a; <---<an=b
be a set of points of [0, x— B]\P such that |ax—ax-1—1/n| <1/n?forl <k <
n. We define &, (ax) = ax + 0(ax), 0 < k < n, and let &, be linear on each of
the intervals [ay-1,ax]. Then obviously, the inverse n, of &, on the interval
J =10,b+ x— B] satisfies a Lipschitz condition with constant 1. Also, if we de-
tine 0,, on J to be the piecewise linear function for which 0, (£, (ax)) = 0(ax),
then 0, is also Lipschitz continuous with constant 1 on J. Using the com-
pactness of the families {n,} and {0,}, we obtain functions n, 0" satisfying
a Lipschitz condition with constant 1 such that n maps J onto [0,b] and 0
maps J onto [0, x— B] with derivative 1 on the subintervals of J corresponding
to the jumps in 0 and such that for each x for which the original 0 is continu-
ous at n(x) we have 8" (x) = 0(n(x)). For p € P we denote limy_,- 0*(x) by
0~ (p) and similarly for ¢*. Note that since 6* and ¢* are continuous from
the right, 6*(p) and ¢*(p) are equal to their limits as x — p*. Also, by the
relationship between the fan angles of 6* at p and the sizes of their images
under f at f(p) established in Section 5, it follows that

e my m;
¢ (p) = lim ¢ (x) = b (’””<m2>52(’“”(m1>51‘”)' (6.12)

For any x € J for which 6*, and consequently ¢* also, is continuous at
n(x), we let ©(x) = 0*(n(x)) and ®(x) = ¢*(n(x)). On the other hand, on
the interval I C J corresponding to p € P, we let © vary linearly from 0~ (p)
to 0* (p) and ® vary linearly from ¢~ (p) to ¢*(p). The functions ® and & so
defined on the interval J are clearly Lipschitz continuous.

Fort € J,let Ly (t), Lo (t) be the halves of the lines x—y =tand x+y =t
emanating upwards from the x-axis. We extend © and & to the triangle T
bounded by L; (0) and L, (b + «— B) by letting R; = m;0 —m ;P be constant on
the each line L;(p) for all p € J. The functions ® and ¢ are obviously Lipschitz
continuous on T. Now consider a Lipschitz continuous mapping z = u +iv :
T — C which satisfies the initial condition

z(x,0) = n(x) (6.13)
and the differential equations
T
arg {zx+2y} =0(x,»),  arg{zy -z} =0(x,¥)+ 7, (6.14)

that is,

(Vy +vx) cosO — (U, +Ux) SinO = 0,
6.15
(Vy —vx)SinO+ (Uy —Uy) cosO = 0. (6.15)

Writing these differential equations in the form

Vy+Vy=—(0y+0)U, Uy-Uy=—(0,-0y)V, (6.16)
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where U = ucos® +vsin® and V = v cos® —usin®, and converting them to
integral equations, it is easy to see that the linear hyperbolic system (6.15) with
initial condition (6.13) has at most one Lipschitz continuous solution. We now
consider the restriction to the domain of dependence D corresponding to [a, b]
of any (mi,m;)-mapping f corresponding to initial values 0* and ¢*, and
define z: T — D as follows. For p € P,let I(p) C J be the corresponding closed
interval. If t € I(p), let R(t) be the union of the two legs of the closed isosceles
right triangle T (p) with base I(p), and for all other t € J let R(t) = t. Note that
each L;(p) meets aunique R(t).If ¢ € T(p) for some p, then we define z(Q) =
p.If {T} =Li(p1)NnL2(p2) and C is not in any T (p), then we define C;, t;, by
{Ci} = Li(pi) NR(t;). We then define z(Z) to be the point on the intersection of
the 1-characteristic of f through n(p;), whose initial inclination is @(Z;), with
the 2-characteristic through n(p2), whose initial inclination is ©(Z») + /2.
This mapping is well defined. Indeed, for each p not in any I(p), p € P, the
indicated characteristics emanate from n(p), in light of what we deduced about
the fans in Section 5. On the other hand, if p € I(p) for some p € P, then on the
left side of any R(p), ® decreases linearly from 0~ (p) —62(p) to 6* (p) and ®
decreases linearly from ¢~ (p) — (m,/m2)d2(p) to ¢*(p). Since an analogous
statement holds for the right side of R(p), we again have that the indicated
characteristics are well defined. Obviously, z(t) = n(t) for t € J. Because of the
definition of ® and ¢ in terms of the invariance of R; = m;® —m;® on the L;,
and the fact that the R; = m;0 —m ¢ are invariant on the i-characteristics of f,
we see that the inclination of the curve z(L,(p)) at z(Z) is ©(T) and that that
of z(L2(p)) is ©(C) +11/2, that is, that 0(z(C)) = (). In addition, this means
that changes in @(C) and 0(z(T)) coincide on segments of the L;(t). Itis clear
that there is some K = K(m1,m>), such that © is Lipschitz continuous with
constant K on each L;(t). It is also clear that all the characteristics of f in the
domain of dependence D have length bounded by some M < co. Moreover, the
initial points of z(L;(p1)) and z(L;(p2)) are at most [n(p1) —n(p2)| < |p1 - p2|.
From these last two facts, together with the convexity of the characteristics of
f and the fact that A® and A0 o z coincide on segments of the L;, it is easy
to show using the HP-property that if S is a segment of L;(p), then the length
of z(S) is at most (KM +1)A;(S), so that z is Lipschitz continuous. Thus, z
is a Lipschitz continuous solution of the initial value problem for (6.15) with
initial values (6.13). From this it follows that the characteristics are uniquely
determined in the entire domain of dependence D of [a,b] and, in turn, that
the R; = m;0 —mj¢, and consequently 0 and ¢ also, are uniquely determined
there.

The foregoing establishes the desired uniqueness in the domain of depen-
dence of largest open interval I onwhich 0 < 0* (x) < 11/2, so that we only need
to consider the case that I # R. Thus we assume that I = (a,b) +# R. Assume
first that I = (a,b) + &, a,b € R. In this case the domain of dependence is the
curvilinear triangle made up of I, an arc A of the rightmost 1-characteristic
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exiting at a, and an arc B of the leftmost 2-characteristic exiting at b. Since
the fan angles at b are determined by the size of the jump in 0* at b, we see
that an initial piece of the 2-fan at b, being determined by the corresponding
fan angle and B, is unique. Now, the 1-characteristics making up the 1-fan at
b emanate from b, are concave towards the right and have angles which tend
to 0, and furthermore do not exit to the right of b. From this it follows that
they are horizontal lines, which gives us the uniqueness of the 1-fan at b and
hence the uniqueness of 6 and ¢ in N([b,~),€) for some € > 0. (The case in
which there is no jump at b is essentially the same, with only minor changes.)
Similarly, we get uniqueness in a neighborhood N([—o,a),€). Since 6 and ¢
are Lipschitz continuous on all horizontal lines in H, their uniqueness in the
entire half-plane follows immediately. That f itself is unique follows from the
condition f(0) = 0. The cases in which a = —~ or b = « are in effect included
in this argument. The only remaining cases are those in which (a,b) = @, that
is, those in which 6* is identically O or m/2 on R or in which 6*(x) jumps
from 11/2 to 0 at a € R. In the first two of these cases, f is easily seen to be
linear. In the final case, let the angular sizes of the 1- and 2-fans at a be §, and
02, and let the angular sizes of the sectors to the right and left of these fans,
respectively, be ag and «;. Then, it is clear from Theorem 5.1 that oz = x; =0
since if g > 0, for example, there would be a 1-characteristic exiting to the
right of a. As above, on the basis of the concavity of the characteristics, we see
that the fans at a are made up of straight lines. The uniqueness then follows
since the numbers 6, and 6, are uniquely determined by conditions (5.2).

Itis clear that the proof can be modified to show uniqueness for solutions to
Cauchy problems for (1.2) associated with transformation problems in much
greater generality.

7. Closing remarks. In this section we briefly discuss some issues pertinent
to further investigation of the transformation problem for cps-mappings. We
begin by pointing out that although Theorem 6.9 might lead one to believe that
“exterior domains” are somewhat simpler to deal with than Jordan domains,
the half-plane situation is, in effect, a fluke because the absence of doubly ex-
iting characteristics essentially (i.e., apart from the simple degenerate cases in
which 6%(x) = 1m/2 on (—o,a) and/or 0 on (b, ), discussed in the final para-
graph of the preceding section) means that all of the mappings in question are
reducible to Cauchy problems. It is not too hard to show that this favorable
circumstance arises also in the case of cps-self-homeomorphisms of the exte-
rior of a disk, making possible their complete description. This case, though,
is substantially more complex than that of half-planes since it involves two
fundamentally different classes of mappings, corresponding to the two kinds
of HP-nets with a single isolated singularity in C (see [5, Theorem 3.3]). More-
over, in contrast to the half-plane case in which the Cauchy data is given on a
straight line and so (interpretation aside) has the standard initial value format,
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in the case of C\N(0, 1), the data given on 0N (0, 1) actually generates a unique
solution in the entire exterior of the disk. Because it would appear that there
are few domains for which no cps-self-homeomorphisms have doubly exiting
characteristics, it would be of considerable interest to determine all of them;
in fact, it may well turn out that the only possibilities are half-planes and the
exteriors of disks.

Although the most appealing transformation problems for cps-mappings
are ones for which D and D’ are (piecewise smoothly bounded) Jordan do-
mains, this case unfortunately leads to a highly over-determined situation in
which there is no way of working exclusively with Cauchy problems since all
of the characteristics are necessarily doubly exiting, and which is further com-
plicated by the possibility of nonexistence established in Theorem 3.1. These
circumstances suggest that one seek explicit nonexistence and qualitative re-
sults, and in this direction we formulate two conjectures.

CONJECTURE 7.1. There is a very strong tendency for cps-homeomorphisms
to bend domains (because of the way they change total curvature of character-
istics); specifically, there are no cps-self-homeomorphisms of disks.

CONJECTURE 7.2. For any two given smoothly bounded Jordan domains and
any given my, m; there are at most a finite number of (mi,mj,)-homeomor-
phisms of one onto the other.

We believe that the case of cps-self-homeomorphisms of strips should prove
both interesting, because they are “almost” Jordan domains, and tractable,
because of the geometric simplicity of their boundaries, even though it is likely
that it nonetheless gives rise to subtle blow-up questions.

In [5] we showed that for an HP-function 0 defined on a smoothly bounded
Jordan domain D the nontangential limits of 6 exist a.e. on dD, a conclusion
considerably weaker than that of Corollary 5.8. We believe, however, that one
can replace the proof of [5] by one that yields the conclusion of this corollary
without any assumption beyond the smoothness of 0D. Doing so, however, will
require an analysis of the local behavior and global consequences associated
with the two kinds of boundary singularities that we have shown cannot arise
in the context of a cps-homeomorphism of D onto a smoothly bounded image
domain, namely, points p € 0D at which there is an exiting characteristic along
whichlim,_, 6(z) does not exist and those at which there are simply no exiting
characteristics at all, both of which possibilities can present themselves in the
more general context.

One can contemplate the extension of some of the results about planar cps-
mappings to their higher-dimensional counterparts. In that context, the under-
lying equations corresponding to (1.2) have in some sense a similar form (see
[4]), but are substantially more complex and allow considerably more leeway
for the avoidance of singularity formation. In particular, there exist nontrivial
cps-self-homeomorphisms of R3, examples of which were found by Yin [14],
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and we believe that an interesting investigation would result from an attempt
to discover all of them.

Before closing, we must mention the significant foundational conjecture
that the partial derivatives of a C! mapping f : D — C with constant prin-
cipal strains m; # m, are necessarily locally Lipschitz continuous. In this
direction we showed in [3] that if Jf is Holder continuous with exponent
o> (1/2)(\/5-1), f is necessarily an (1, m;)-mapping, and the proof can
be sharpened to show that o« > 1/2 is sufficient.
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