

A REPRESENTATION THEOREM FOR OPERATORS ON A SPACE OF INTERVAL FUNCTIONS

J. A. CHATFIELD

Department of Mathematics
Southwest Texas State University
San Marcos, Texas 78666 U.S.A.

(Received May 4, 1978)

ABSTRACT. Suppose N is a Banach space of norm $|\cdot|$ and R is the set of real numbers. All integrals used are of the subdivision-refinement type. The main theorem [Theorem 3] gives a representation of TH where H is a function from $R \times R$ to N such that $H(p^+, p^+)$, $H(p, p^+)$, $H(p^-, p^-)$, and $H(p^-, p)$ each exist for each p and T is a bounded linear operator on the space of all such functions H . In particular we show that

$$\begin{aligned} TH = & (I) \int_a^b f_H d\alpha + \sum_{i=1}^{\infty} [H(x_{i-1}^-, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^+)] \beta(x_{i-1}^-) \\ & + \sum_{i=1}^{\infty} [H(x_i^-, x_i^+) - H(x_i^-, x_i^-)] \theta(x_{i-1}^-, x_i^-) \end{aligned}$$

where each of α , β , and θ depend only on T , α is of bounded variation, β and θ are 0 except at a countable number of points, f_H is a function from R to N depending on H , and $\{x_i\}_{i=1}^{\infty}$ denotes the points p in $[a, b]$ for which $[H(p, p^+) - H(p^+, p^+)] \neq 0$ or $[H(p^-, p) - H(p^-, p^-)] \neq 0$. We also define an interior

interval function integral and give a relationship between it and the standard interval function integral.

1. INTRODUCTION.

Let N be a Banach space of norm $|\cdot|$ and R the set of real numbers. The purpose of this paper is to exhibit a representation of TH where H is a function from $R \times R$ to N such that $H(p^+, p^+)$, $H(p, p^+)$, and $H(p^-, p^-)$, and $H(p^-, p)$ each exist for each p and T is a bounded linear operator on the space of all such functions H . Functions H for which each of the four preceding limits exist have been used extensively in the study of both sum integration and multiplicative integration, (for example see [2]). In particular we show that

$$\begin{aligned} TH = & (I) \int_a^b f_H d\alpha + \sum_{i=1}^{\infty} [H(x_{i-1}, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^+)] \beta(x_{i-1}) \\ & + \sum_{i=1}^{\infty} [H(x_i^-, x_i^-) - H(x_i^-, x_i^-)] \theta(x_{i-1}, x_i), \end{aligned}$$

where each of α , β , θ depend only on T , α is of bounded variation, β and θ are 0 except at a countable number of points, f_H is a function from R to N depending on H , and $\{x_i\}_{i=1}^{\infty}$ denotes the points p in $[a, b]$ for which $H(p, p^+) - H(p^+, p^+)$ $\neq 0$ or $[H(p^-, p^-) - H(p^-, p^-)] \neq 0$. We also define an interior interval function integral and give a relationship between it and the standard interval function integral.

2. DEFINITIONS.

If H is a function from $R \times R$ to N , then $H(p^+, p^+) = \lim_{x, y \rightarrow p} H(x, y)$ and similar meanings are given to $H(p, p^+)$, $H(p^-, p^-)$, and $H(p^-, p)$. The set of all functions for which each of the preceding four limits exist will be denoted by OL^0 . If H is a function from $R \times R$ to N then H is said to be (1) of bounded variation on the interval $[a, b]$ and (2) bounded on $[a, b]$ if there exists a number M and a subdivision D of $[a, b]$ such that if $D' = \{x_i\}_{i=0}^n$ is a refinement of D then

(1) $\sum_{i=1}^n |H(x_{i-1}, x_i)| < M$ and (2) if $0 < i \leq n$, then $|H(x_{i-1}, x_i)| < M$, respectively.

Further, H is said to be integrable on $[a, b]$ if there is a number A such that for each $\epsilon > 0$ there is a subdivision D of $[a, b]$ such that if $D' = \{x_i\}_{i=0}^n$ is a refinement of D , then $|\sum_{i=1}^n H(x_{i-1}, x_i) - A| < \epsilon$ and A is denoted by $\int_a^b H$ when such an A exists. In our development we will also find a slight modification of the preceding definition useful. If $H(x_{i-1}, x_i)$ is replaced by $H(r_i, s_i)G(x_{i-1}, x_i)$, $x_{i-1} < r_i < s_i < x_i$, in the approximating sum of the preceding definition then the number A is denoted by $(I_H) \int_a^b HG$ and termed the interior integral of H with respect to G on $[a, b]$. Also, if each of f and α is a function from R to N , then the interior integral of f with respect to α exists means there is a number A such that if $\epsilon > 0$ then there is a subdivision D of $[a, b]$ such that if

$D' = \{x_i\}_{i=0}^n$ is a refinement of D and for $0 < i \leq n$, $x_{i-1} < t_i < x_i$, $|\sum_{i=1}^n f(t_i)[\alpha(x_i) - \alpha(x_{i-1})] - A| < \epsilon$ and A is denoted by $(I) \int_a^b f d\alpha$.

If α is a function from R to N , $\alpha(p^+) = \lim_{x \rightarrow p^+} \alpha(x)$, $\alpha(p^-) = \lim_{x \rightarrow p^-} \alpha(x)$, and

$d\alpha$ denotes the function H from $R \times R$ to N such that for $x < y$, $H(x, y) = \alpha(y) - \alpha(x)$.

If each of H , H_1 , H_2 , ... is a function from $R \times R$ to N , then $\lim_{n \rightarrow \infty} H_n = H$ uniformly

on $[a, b]$ means if $\epsilon > 0$ there is a positive integer N and a subdivision

$D = \{x_i\}_{i=0}^n$ of $[a, b]$ such that if $n > N$ and $x_{i-1} \leq r < s \leq x_i$ for some $0 < i \leq n$, then $|H(r, s) - H_n(r, s)| < \epsilon$. If H is a function from $R \times R$ to N , then H is bounded on $[a, b]$ means there is a number M and a subdivision $D = \{x_i\}_{i=0}^{\infty}$ of $[a, b]$ such that if $0 < i \leq n$ and $x_{i-1} \leq r < s \leq x_i$, then $|H(r, s)| < M$. The norm of H on $[a, b]$ with respect to D , $\|H\|_D$ is then defined as the greatest lower bound of the set of all such M 's.

T is a linear operator on OL^0 means T is a transformation from OL^0 to N such that if each of H_1 and H_2 are in OL^0 then

$$T[k_1 H_1 + k_2 H_2] = k_1 T H_1 + k_2 T H_2$$

for k_1, k_2 in R . T is bounded on $[a, b]$ means there is a number M such that $|TH| \leq M |H|$ for some subdivision D of $[a, b]$.

For convenience we adopt the following conventions for a function from $R \times R$ to N and R to N for some subdivision $D = \{x_i\}_{i=0}^n$ of $[a, b]$:

$$(1) \quad H(a^-, a) = H(a^-, a^-) = H(b, b^+) = H(b^+, b^+) = 0,$$

$$(2) \quad H(x_{i-1}, x_i) = H_i, \quad 0 < i \leq n,$$

$$(3) \quad \alpha(x_i) - \alpha(x_{i-1}) = \Delta \alpha_i,$$

$$(4) \quad \sum_{i=1}^n H(x_{i-1}, x_i) = \sum_D H_i.$$

3. THEOREMS.

We will begin by establishing a relationship between $\int_a^b H d\alpha$ and $(I_H) \int_a^b H d\alpha$ which will require the following lemmas.

LEMMA 1. If H is in OL^0 and α is a function from R to N of bounded variation on $[a, b]$, then $\int_a^b H d\alpha$ exists.

This lemma is a special case of THEOREM 2 of [2].

LEMMA 2. Suppose H is in OL^0 , $[a, b]$ is an interval, $\varepsilon > 0$, and S_1 and S_2 are sets such that p is in S_1 if and only if p is in $[a, b]$ and $|H(p, p^+) - H(p^+, p^+)| \geq \varepsilon$ and p is in S_2 if and only if p is in $[a, b]$ and $|H(p^-, p) - H(p^-, p^-)| \geq \varepsilon$. Then, each of S_1 and S_2 is a finite set. [2, lemma page 498].

We note that it follows from LEMMA 2 that if S is the set such that p is in S if and only if $H(p, p^+) - H(p^+, p^+) \neq 0$ or $H(p^-, p) - H(p^-, p^-) \neq 0$ then S is countable.

LEMMA 3. If H is in OL^0 and α is a function from R to N of bounded variation on $[a, b]$ then (1) if p is in $[a, b]$ each of $\alpha(p^+)$ and $\alpha(p^-)$ exists and (2) if $\{x_i\}_{i=1}^\infty$ is a sequence of numbers such that if p is in $[a, b]$ and $H(p, p^+) - H(p^+, p^+) \neq 0$

or $H(p^-, p) - H(p^-, p^-) \neq 0$, then there is an n such that $p = x_n$, then

$$(1) \sum_{i=1}^{\infty} [H(x_i^-, x_i^+) - H(x_i^+, x_i^+)] [\alpha(x_i^+) - \alpha(x_i^-)] \text{ exists}$$

$$\text{and (2)} \sum_{i=1}^{\infty} [H(x_i^-, x_i^-) - H(x_i^-, x_i^+)] [\alpha(x_i^-) - \alpha(x_i^+)] \text{ exists.}$$

INDICATION OF PROOF. It follows from the bounded variation of α that for p in $[a, b]$ each of $\alpha(p^+)$ and $\alpha(p^-)$ exists.

Since H is in OL^0 , it follows from the covering theorem that H is bounded on $[a, b]$ and that there is a number M_1 such that for each positive integer i ,

$$|H(x_i, x_i^+) - H(x_i^+, x_i^+)| < M_1,$$

and, furthermore, for n a positive integer and $0 < i \leq n$, let $x_{p_i} > x_i$ such that $\sum_{i=1}^n |\alpha(x_i^+) - \alpha(x_{p_i})| < 1$. Hence,

$$\begin{aligned} \sum_{i=1}^n & |[H(x_i, x_i^+) - H(x_i^+, x_i^+)] [\alpha(x_i^+) - \alpha(x_i^-)]| \\ & \leq M_1 \left[\sum_{i=1}^n |\alpha(x_i^+) - \alpha(x_{p_i})| + \sum_{i=1}^n |\alpha(x_{p_i}) - \alpha(x_i^-)| \right] \\ & < M_1 (1) + M_1 \sum_D |\alpha(x_i^-) - \alpha(x_{i-1}^-)|, \end{aligned}$$

where D is a subdivision of $[a, b]$ containing x_i and x_{p_i} as consecutive points in D for each $0 < i \leq n$. Hence, since α is of bounded variation there is a number M such that

$$\sum_{i=1}^n |[H(x_i, x_i^+) - H(x_i^+, x_i^+)] [\alpha(x_i^+) - \alpha(x_i^-)]| < M.$$

Therefore,

$$\sum_{i=1}^{\infty} [H(x_i^-, x_i^+) - H(x_i^+, x_i^+)] [\alpha(x_i^+) - \alpha(x_i^-)] \text{ exists. In a similar manner it may be}$$

shown that

$$\sum_{i=1}^{\infty} [H(x_i^-, x_i^-) - H(x_i^-, x_i^+)] [\alpha(x_i^-) - \alpha(x_i^+)] \text{ exists.}$$

THEOREM 1. If H is in OL^0 and α is a function from R to N of bounded variation on $[a, b]$, then $(I_H) \int_a^b H d\alpha$ exists.

PROOF. If $\epsilon > 0$ then it follows from LEMMA 2 that each of the sets A_ϵ^+ and A_ϵ^- to which p belongs if and only if p is in $[a, b]$ and $|H(p, p^+) - H(p^+, p^+)| \geq \epsilon$ or $|H(p^-, p) - H(p^-, p^-)| \geq \epsilon$, respectively, is a finite set. Let $A_\epsilon^+ = \{c_i\}_{i=1}^{m_1}$, $A_\epsilon^- = \{d_i\}_{i=1}^{m_2}$, and A^+ and A^- denote the sets to which p belongs if and only if p is in $[a, b]$ and $H(p, p^+) - H(p^+, p^+) \neq 0$ or $H(p^-, p) - H(p^-, p^-) \neq 0$, respectively. Since each of A^+ and A^- is a countable set then let $A^+ + A^- = \{y_i\}_{i=1}^\infty$.

Since α is of bounded variation on $[a, b]$, then for each c_i , $0 < i \leq m_1$ and d_i , $0 < i \leq m_2$ there is an $e_i > c_i$ and an $f_i > d_i$ such that if $e_i \geq r_i > c_i$ and $f_i \leq s_i < d_i$, then $|\alpha(c_i^+) - \alpha(r_i)| < \frac{\epsilon}{16m_1}$ and $|\alpha(d_i^-) - \alpha(s_i)| < \frac{\epsilon}{16m_2}$.

From LEMMA 3, it follows that there is a positive integer N such that if $n > N$, then

$$(1) \quad \left| \sum_{i=1}^n [H(y_i^+, y_i^+) - H(y_i^-, y_i^-)] [\alpha(y_i^+) - \alpha(y_i^-)] \right| - \sum_{i=1}^n [H(y_i^+, y_i^+) - H(y_i^-, y_i^-)] [\alpha(y_i^+) - \alpha(y_i^-)] < \frac{\epsilon}{8}$$

and

$$(2) \quad \left| \sum_{i=1}^n [H(y_i^-, y_i^-) - H(y_i^+, y_i^+)] [\alpha(y_i^-) - \alpha(y_i^+)] \right| - \sum_{i=1}^n [H(y_i^-, y_i^-) - H(y_i^+, y_i^+)] [\alpha(y_i^-) - \alpha(y_i^+)] < \frac{\epsilon}{8}.$$

Note that for some y_i 's, $[H(y_i^-, y_i^-) - H(y_i^+, y_i^+)]$ or $[H(y_i^+, y_i^+) - H(y_i^-, y_i^-)]$ may be zero.

Since, from LEMMA 1, $\int_a^b H d\alpha$ exists, then there is a number M and a subdivision D_1 of $[a, b]$ such that if $D' = \{x_i\}_{i=0}^n$ is a refinement of D_1 , then

$$(3) \quad \sum_{D'} |\Delta \alpha_i| < M,$$

$$(4) \quad \left| \int_a^b H d\alpha - \sum_{D'} H_i \Delta \alpha_i \right| < \frac{\epsilon}{4},$$

and (5) if $0 < i \leq n$, then $|H(x_{i-1}^+, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^-)| < M$ and

$$|H(x_i^-, x_i^-) - H(x_i^-, x_i^+)| < M.$$

Further, since H is in OL^0 , using the covering theorem we may obtain a subdivision D_2 of $[a, b]$ such that if $D' = \{x_i\}_{i=0}^n$ is a refinement of D_2 , $0 < i \leq n$, and

$x_{i-1} < r < s < x_i$, then

$$(6) \quad |H(r, s) - H(x_i^-, x_i^-)| < \frac{\epsilon}{64M},$$

$$(7) \quad |H(r, s) - H(x_{i-1}, x_{i-1})| < \frac{\epsilon}{6M},$$

$$(8) \quad |H(x_{i-1}, x_{i-1}^+) - H(x_{i-1}, x_i)| < \frac{\epsilon}{64},$$

and (9) $|H(x_i^-, x_i) - H(x_{i-1}, x_i)| < \frac{\epsilon}{64M}$,

Let $D = D_1 + D_2 + A_\epsilon^+ + A_\epsilon^- + \sum_{i=1}^{m_1} \{e_i\} + \sum_{i=1}^{m_2} \{f_i\} + \sum_{i=1}^N \{y_i\}$, $D' = \{x_i\}_{i=0}^n$ be a refinement of D , and for each $0 < i \leq n$, $x_{i-1} < r_{j-1} < s_j < x_i$. Choose $m > N$ such that

for each x_i , $0 < i \leq n$, in $D' \cdot (A^+ + A^-)$ there exists a positive integer $z < m$ such that $y_z = x_i$. Hence, for x_i , $0 < i \leq n$, in D' such that neither x_{i-1} nor x_i is in $(A^+ + A^-)$, it follows from (6)-(9) that $|H(r_i, s_i) - H(x_{i-1}, x_i)| < \frac{\epsilon}{32M}$.

$$\begin{aligned} & \text{If } W_i = H(y_{i-1}^+, y_{i-1}^+) - H(y_{i-1}^+, y_{i-1}^-) \text{ and } Q = \{y_1, y_2, \dots, y_m\} \text{ for } 0 < i \leq m \text{ then} \\ & \left| \sum_{i=1}^m W_i [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] - \sum_{D' \cdot A_\epsilon^+} [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] \Delta \alpha_i \right| \\ & = \left| \sum_{A_\epsilon^+} W_1 [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] + \sum_{Q - A_\epsilon^+} W_1 [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] \right. \\ & \quad \left. - \sum_{D' \cdot A_\epsilon^+} [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] - \sum_{D' \cdot (A^+ - A_\epsilon^+)} [\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)] \Delta \alpha_i \right| \\ & \leq \sum_{A_\epsilon^+} |W_i| + |\alpha(y_{i-1}^+) - \alpha(y_i)| + \sum_{Q - A_\epsilon^+} |W_i| \cdot |\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)| \\ & \quad + \sum_{D' \cdot (A^+ - A_\epsilon^+)} |H(x_{i-1}, x_{i-1}^+) - H(x_{i-1}, x_{i-1}^-)| \cdot |\Delta \alpha_i| \\ & < M \sum_{A_\epsilon^+} \frac{\epsilon}{16Mm_1} + \frac{\epsilon}{16M} \sum_{Q - A_\epsilon^+} |\alpha(y_{i-1}^+) - \alpha(y_{i-1}^-)| + \frac{\epsilon}{16M} \sum_{D' \cdot (A^+ - A_\epsilon^+)} |\Delta \alpha_i| \\ & < \frac{3\epsilon}{16}. \end{aligned}$$

Hence

$$(10) \quad \left| \sum_{i=1}^m w_i [\alpha(y_{i-1}^+) - \alpha(y_{i-1})] - \sum_{D' \cdot A^+} [H(x_{i-1}^+, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^+)] \Delta \alpha_i \right| < \frac{3\epsilon}{16}$$

and in a similar manner it may be shown that

$$(11) \quad \left| \sum_{i=1}^m z_i [\alpha(y_i^-) - \alpha(y_i)] - \sum_{D' \cdot A^-} [H(x_i^-, x_i^-) - H(x_i^-, x_i)] \Delta \alpha_i \right| < \frac{3\epsilon}{16},$$

where $z_i = H(y_i^-, y_i^-) - H(y_i^-, y_i)$.

Using inequalities (10) and (11) we are now able to complete the proof of the theorem. In the following manipulations w_i and z_i are as defined for (10) and (11) and $P_i = H(x_{i-1}^+, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^+)$ and $Q_i = H(x_i^-, x_i^-) - H(x_i^-, x_i)$.

$$\begin{aligned} & \left| \sum_{D'} H_j \Delta \alpha_i - \int_a^b H d\alpha - \sum_{i=1}^m w_i [\alpha(P_{i-1}^+) - \alpha(P_{i-1})] - \sum_{i=1}^m z_i [\alpha(y_i^-) - \alpha(y_i)] \right| \\ & \leq \left| \sum_{D'} (H_j - H_i) \Delta \alpha_i - \sum_{i=1}^m w_i [\alpha(y_{i-1}^+) - \alpha(y_{i-1})] - \sum_{i=1}^m z_i [\alpha(y_i^-) - \alpha(y_i)] \right| + \frac{\epsilon}{4} + \frac{\epsilon}{16} + \frac{\epsilon}{16} \\ & \leq \left| \sum_{D'} (H_j - H_i) \Delta \alpha_i - \sum_{D' \cdot A^+} P_i \Delta \alpha_i - \sum_{D' \cdot A^-} Q_i \Delta \alpha_i \right| + \frac{3}{16} + \frac{3}{16} + \frac{3}{8} \\ & \leq \sum_{D' \cdot D' \cdot (A^+ + A^-)} |H_j - H_i| \cdot |\Delta \alpha_i| + \sum_{D' \cdot A^+} |H_j - H_i - P_i| |\Delta \alpha_i| + \sum_{D' \cdot A^-} |H_j - H_i - Q_i| \cdot |\Delta \alpha_i| + \frac{3\epsilon}{4} \\ & \leq \frac{\epsilon}{32M} \cdot M + \frac{\epsilon}{32M} \cdot M + \frac{\epsilon}{32M} \cdot M \\ & < \epsilon. \end{aligned}$$

Hence, we have a relationship established between $(I_H) \int_a^b H d\alpha$ and $\int_a^b H d\alpha$ which will be used in the proof of the principal theorem.

THEOREM 2. If $\{H_i\}_{i=0}^\infty$ is a sequence of functions from $S \times S$ to N , such that for each i , H_i is in OL^0 , $\lim_{n \rightarrow \infty} H_n = H_0$ uniformly on $[a, b]$, and T is a bounded linear operator on OL^0 then $\lim_{n \rightarrow \infty} TH_n = TH_0$.

The proof of this theorem is straightforward and we omit it.

THEOREM 3. Suppose H is in OL^0 , T is a bounded linear operator on OL^0 .

Then,

$$\begin{aligned} TH &= (I) \int_a^b f_H d\alpha + \sum_{i=1}^\infty [H(x_{i-1}^+, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^+)] \beta(x_{i-1}) \\ &+ \sum_{i=1}^\infty [H(x_i^-, x_i^-) - H(x_i^-, x_i^-)] \theta(x_{i-1}, x_i), \end{aligned}$$

where each of α , β , and θ depend only on T , α is of bounded variation, β and θ are 0 except at a countable number of points, f_H is a function from R to N depending on H , and $\{x_i\}_{i=1}^{\infty}$ denote the points in $[a, b]$ for which $[H(x_i^-, x_i^+) - H(x_i^+, x_i^-)] \neq 0$ or $H(x_i^-, x_i) - H(x_i^+, x_i^-) \neq 0$, $i=1, 2, \dots, n$.

PROOF. We first define a sequence of functions converging uniformly to a given function H in OL^0 and then apply THEOREM 2 to establish THEOREM 3. We first define functions g and h for each pair of numbers t, x , $a \leq t \leq b$, $a \leq x \leq b$ such that

$$g(t, x) = \begin{cases} 1, & \text{if } t=x \\ 0, & \text{if } t \neq x \end{cases} \quad \text{and } h(t, x) = \begin{cases} 1, & \text{if } a \leq t \leq x \\ 0, & \text{if } x < t \leq b, \end{cases}$$

and using these functions and the operator T define functions α , β , γ , and θ such that

$$\begin{aligned} \alpha(x) &= TH(\cdot, x); \quad \beta(x) = Tg(\cdot, x); \quad \gamma(x) = Tg(x, \cdot); \quad \theta(x, y) = Tg(\cdot, x)g(y, \cdot); \text{ and} \\ \theta(x, y) &= \gamma(y) - \theta(x, y) \text{ for } x \text{ and } y \text{ in } [a, b]. \end{aligned}$$

Clearly, α is of bounded variation on $[a, b]$ and we see from

$$\begin{aligned} \sum_{D'} |\theta(x_{i-1}, x_i)| &= \sum_{D'} \theta_i^2 \\ &= \sum_{D'} \operatorname{sgn} \theta_i Tg(\cdot, x_{i-1})g(x_i, \cdot) \\ &\leq M \left| \sum_{D'} \operatorname{sgn} \theta_i g(\cdot, x_{i-1})g(x_i, \cdot) \right|_D \\ &= M, \end{aligned}$$

for D' a refinement of a subdivision D of $[a, b]$, it follows that $\sum_{i=1}^{\infty} |\theta(x_{i-1}, x_i)|$ exists and in a similar manner that each of $\sum_{i=1}^{\infty} |\beta(x_i)|$ and $\sum_{i=1}^{\infty} |\alpha(x_i)|$ exists.

Hence, $\sum_{i=1}^{\infty} |\theta(x_{i-1}, x_i)|$ exists.

Each of our approximating functions H_n will be defined in terms of a subdivision D_n of $[a, b]$ determined in the following manner.

Since α is of bounded variation on $[a, b]$ and H is in OL^0 then from THEOREM 1, $(I_H) \int_a^b H d\alpha$ exists and there is a subdivision K_n of $[a, b]$ such that if $K' = \{x_i\}_{i=1}^m$ is a refinement of K_n , then $|(I_H) \int_a^b H d\alpha - \sum_{K'} H(r_i, s_i) \Delta \alpha_i| < \frac{1}{n}$ where for $0 < i \leq m$,

$x_{i-1} < r_i < s_i < x_i$. It follows from the covering theorem and the existence of the limits $H(p, p^+)$ and $H(p^+, p^-)$ that there is a subdivision $I_n = \{x_i\}_{i=0}^m$ of $[a, b]$ such that if $x_{i-1} < x < r < s < y < x_i$, $0 < i \leq m$, then $|H(x, y) - H(r, s)| < \frac{1}{n}$.

Further, let J_n denote the set such that p is in J_n if p is in $[a, b]$ and $|H(p, p^+) - H(p^+, p^-)| \geq \frac{1}{n}$ or $|H(p^-, p) - H(p^-, p^-)| \geq \frac{1}{n}$ and $D_n = K_n + J_n + I_n$. For each positive integer n , let H_n be a function from $R \times R$ to N determined by $D_n = \{x_i\}_{i=1}^m$ in the following manner:

$$H_n(x, y) = \sum_{i=1}^m H(r_i, s_i) [h(x, x_i) - h(x, x_{i-1})] + \sum_{i=1}^m [H(x_{i-1}, x_{i-1}^+) - H(r_i, s_i)] [g(x, x_i)] \\ + \sum_{i=1}^m [H(x_i^-, x_i) - H(r_i, s_i)] g(x_i, y) \\ - \sum_{i=1}^m [H(x_i^-, x_i) - H(r_i, s_i)] g(x, x_{i-1}) g(x_i, y)$$

for each (x, y) such that $x_{i-1} \leq x < y \leq x_i$, for some $0 < i \leq m$, and for each $[x_{i-1}, x_i]$, $0 < i \leq m$, $x_{i-1} < r_i < s_i < x_i$.

It is evident that $\lim_{n \rightarrow \infty} H_n = H$ uniformly on $[a, b]$ for if $\epsilon > 0$, $\frac{1}{n} < \epsilon$,

$D = D_n = \{x_i\}_{i=0}^m$, and $x_{p-1} < x < r < s < y < x_p$ for some $0 < p \leq m$, then $H_n(x_{p-1}, x_p) = H(x_{p-1}, x_p)$, $H_n(x, x_p) = H(x, x_p)$, $H_n(x_{p-1}, y) = H(x_{p-1}, y)$, and $H_n(x, y) = H(r, s)$. Hence $\lim_{n \rightarrow \infty} H_n = H$ uniformly on $[a, b]$.

Since $\lim_{n \rightarrow \infty} H_n = H$ uniformly on $[a, b]$, applying THEOREM 2, we have

$$\begin{aligned}
TH &= \lim_{n \rightarrow \infty} TH_n \\
&= \lim_{n \rightarrow \infty} \sum_{D_n} H(r_i, s_i) [TH(\cdot, x_i) - TH(\cdot, x_{i-1})] \\
&\quad + \lim_{n \rightarrow \infty} \sum_{D_n} [H(x_{i-1}, x_{i-1}^+) - H(r_i, s_i)] Tg(\cdot, x_{i-1}) \\
&\quad + \lim_{n \rightarrow \infty} \sum_{D_n} [H(x_i^-, x_i) - H(r_i, s_i)] Tg(x_i, \cdot) \\
&\quad + \lim_{n \rightarrow \infty} [-H(x_i^-, x_i) + H(r_i, s_i)] Tg(\cdot, x_{i-1}) g(x_i, \cdot) \\
&= (I_H) \int_a^b H d\alpha + \sum_{i=1}^{\infty} [H(x_{i-1}, x_{i-1}^+) - H(x_{i-1}^+, x_{i-1}^-)] \beta(x_{i-1}) \\
&\quad + \sum_{i=1}^{\infty} [H(x_i^-, x_i) - H(x_i^-, x_i^-)] \gamma(x_i) \\
&\quad + \sum_{i=1}^{\infty} [H(x_i^-, x_i^-) - H(x_i^-, x_i)] \theta(x_{i-1}, x_i) \\
&\quad + \sum_{i=1}^{\infty} H(x_i^-, x_i^-) \theta(x_{i-1}, x_i)
\end{aligned}$$

where the existence of each of the infinite sums is assured by LEMMA 3 and the equality of the last two expressions follows from the definition of D_n .

All that remains to complete the proof of THEOREM 3 is to show that $(I_H) \int_a^b H d\alpha$ may be represented by $(I_H) \int_a^b f_H d$ where f_H is a function from R to N . If we let f_H be the function such that for each p in $[a, b]$ $f_H(p) = H(p^+, p^+)$ then it follows that $(I_H) \int_a^b f_H d\alpha$ exists and is $(I_H) \int_a^b H d\alpha$.

REFERENCES

1. Goffman, Casper and Pedrick, George, *First Course in Functional Analysis*, Prentice-Hall, Inc., 1965.
2. Helton, B.W. *A Product Integral Representation for a Gronwall Inequality*, Bulletin of A.M.S. 23 (3), (1969) 493-500.
3. Hildebrandt, T.H. *Linear Functional Transformations in General Spaces*, Bulletin of A.M.S. 37 (1931) 185-212.
4. Hildebrandt, T.H. and Schoenberg, I.J. *On Linear Functional Operations and the Moment Problem for a Finite Interval in One or Several Variables*, Annals of Math. 34 (1933) 317-328.
5. Kalterborn, H.S. *Linear Functional Operations on Functions Having Discontinuities of the First Kind*, Bulletin of A.M.S. 40 (1934), 702-708.
6. Riesz, F. *Annales de l' Ecole, Normale Supérieure* (3), 31 (1914).
7. Riesz, F. and B. St.-Nagy *Lecons d'analyse fonctionnelle*, 3rd edition, Budapest: Akadémiai Kiadó (1955).

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br