Internat. J. Math. & Math. Scd. 269
VoL. 1 (1978) 269-2583

NECESSARY AND SUFFICIENT CONDITIONS FOR EVENTUALLY
VANISHING OSCILLATORY SOLUTIONS OF
FUNCTIONAL EQUATIONS WITH SMALL DELAYS

BHAGAT SINGH

Department of Mathematics
University of Wisconsin Center
705 Viebahn Street
Manitowoc, Wisconsin 54220 U.S.A.

(Received March 28, 1978 and in Revised form June 30, 1978)

ABSTRACT. Necessary and sufficient conditions are found for all oscillatory
solutions of the equation

(rpy (®) (rp o (£) (-==(ry(t) () (£)y' (£)) ") ') '=-=) " + a(t)h(y(g(t))) = b(t)
to approach zero. Sufficient conditions are also given to ensure that all
solutions of this equation are unbounded.
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1. INTRODUCTION.

Recently, T. Kusano and H. Onose [6] studied the equation
(rn_l(t)(rn_z(t)(---(rz(t)(rl(t)y'(t))')'---)')')' + a(t)h(y(g(t))) = b(t) (1)
and found sufficient conditions which force all bounded nonoscillatory solutions

of (1) to approach zero when a(t) is oscillatory. For positive a(t), the same
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conditions ensured that all nonoscillatory solutions of (1) approached zero.
Kartsatos [4, Theo. 1] also found sufficient criteria for all bounded non-
oscillatory solutions of (1) to, asymptotically, vanish generalizing results
of this author and Dahiya [7, Theo. 1]. 1In fact, since the work of Hammett
[3] such asymptotic results about the nonoscillatory solutions of ordinary
and retarded differential equations have been obtained by many authors such
as Kartsatos [4], Kusano and Onose [5, 6], this author and Dahiya [7], this
author [9, 10, 11] and many others. A fairly exhaustive list of references
on oscillation can be found in Graef [2]. Most of these results relate to
nonoscillation properties of solutions. Very little has been said about the
asymptotic nature of the corresponding oscillatory solutions of these equations.
This author's work [8, 9, 12] is devoted to this type of study about the
oscillatory solutions of such equations.

Our purpose in this paper is to further the study initiated by Kusano
and Onose [6] and find necessary and sufficient conditions to ensure that all
oscillatory solutions of equation (1) tend to zero as t *+ . In the last
section, we give sufficient conditions which cause all solutions of (1) to
be unbounded. Chen [1] studied a similar problem but our results are
different and more extensive.

In what follows, we shall restrict our study to those solutions of (1)
which can be continuously extended on some positive half line, say for
t Z.to > o. We shall, therefore, assume the point to fixed for the rest
of this paper. The term "solution" applies only to continuously extendable

solutions on R' = [t,, «).

2. DEFINITIONS AND ASSUMPTIONS.

The following conditions hold for the rest of this paper:

(1) a(t), b(t), g(t), ry(t), -, r _;(t) are real valued and continuous
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on [t,, ®), heC (-2 ®);
(ii) g(t) £ t, g(t) > ® as t + «;
(iii) t h(t) > o, t % o;
(iv) there exists a number m such that

h(t)
t

(2)

<m

(v) r;(t) >a>o, i=1, 2, ---, n-1; for large t on R'.
A solution is said to be oscillatory if it has arbitrarily large zeros, other-
wise it is said to be nonoscillatory. To further shorten notations we
designate:

Zyy(t) = (ry(B)y"(£))', Zyy(t) = (rp(t) (ry(B)y'(€))")*', =—--,

Ziy(t) = (r; (£) (r;_) (&) (=== (£, (t) (ry (B)Y' (£)) ) '===)) ") ",

i=1, 2, ---, n-1. (3)

3. MAIN RESULTS.
LEMMA (3.1). Suppose [ |a(t)|dt < = and [ |b(t)|dt < =. Let y(t)
be a bounded oscillatory solution of (1). Then

ri41(Z23¥(t))
— ) o (4)
tn-1—2

as t* o i=1, 2, --—-, n-2.
PROOF. Since y(t) 1is oscillatory, Ziy(t) is oscillatory for i =1,

2, =--, n-1l. Let € > o be arbitrary and let t, > t be so large that
1

0
Zn_2Y(t1) =0,

mMf |a(t) |at < e/2 (5)
i3t
and
by lat < e/2, (6)
o1

where Iy(g(t))l <M for t z_tl.
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Integrating equation (1) we have

lrpmy (€22, oy (t) | imetla(x)ldx + ]tlb(x)|dx <e (7)
tg t

Thus Zn_zy(t) + o as t > ™,

Let now tp > t; be a zero of 2 _.y(t) so that lrp-1 )2 _y(e) | < e

1
for t_>_t2. Now

t
r o ()2, Ly(t) = { z_ _y(s)ds ®)
2
which readily gives
lrpp0)z _ve)| e (t-ty)

) Le. (9)
t t

Proceeding this way, the proof is completed.

LEMMA (3.2). Suppose | la(t)|dat <, [T|b(t)]|dt < » and

1 N2
) (€) O(t“'B)

for some B € [0, 1). Then oscillatory solutions of (1) are bounded.

PROOF. Let T > to be large enough so that for t > T, g(t) > to.

Integrating (1) (for t > T) over [to, t] we have

t
Z, o)yt) = — L r i (£))7, y(ty) - —E— [ a(0hiy(g(x)))dx
rpp (£) T (®) t
¢ —1 [fpaax. (10)
r-1(8) ty

On repeated integration (10) yields
r ()Y (8) = x) (EQ)y" (£g) + £, (E)Z ¥ (tg) [ 1/ry(x)ax
%o
t Ixz
+ r3(tg)Z, (v (t)) [ 1/ry(xp) [ “1/ry(x )axdx, + ===
t t
0 0
Xn-
*mmm ok xp o (e)Zp oy (tg) [F1/ry(xp) [FP1/rg - [0 21 /z 0y (x)Ax === dx,
to to to

t x x Xn— X
- [Py [ ek [ [P PPl n(y g ))ax - ax,
to to to ty TIn-10n-1) ¢,
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t -—
+ 1/x5(x,) fle/r3(x3) fx31/r4(x4) _— Ixn 2 1
o %o o to In-1(xp-1)
Xn-
[ n lb(x)dx --- dx, (11)
o

Dividing (11) by rl(t) and integrating between t, and g(t) we have

[9 (t)
t

Y(g(t)) = y(g(ty)) + ry(ty)y' (ty) 1/x) (x)dx + ry(tg) 2y (tg)

(o]

e ) /e, 0axdx,
%o o

t X
+ r3(tg)zyy(ty) {g( )l/rl(xl) {xll/rz(xz) { 21/r3(x)dxdx2dx1

0 0 0
(t) X1
Fmmm b r ()2 v ) [0 /e (k) 1/rg(xp) —--
to tg
¥n-2 4
dxdxn_2 - dx1
t0 rn_l(x)
g(t) . X1 X2 Xn-2
- e ) f TWryxy) [ TL/rgtey) --- 4 1/ (%)
o o i) to
X0
/ a )by (g (x)))axdxy --- dax,
t
0
g (t) X3 X2 Xn-2
+ { 1/r, (x)) { 1/r,(x,) { 1/14(x3) === { /e, ) (xpq)
0 0 0 0
Xn-1
J 7 Tb(oaxdx _jdx;_,dx,_5 --- dx;  (12)
o
Since each 1/r;(t) _<_% , i=2, 3, ==-n-1 and g(t) <t we have from
above

t
ly@aen| < ly@eg| + [ry(eg)y’ (o) | { 1/, (x)dx
0

1 t
+ 5 |5z vy | [ (x-tg) /) (x)ax
t
0
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1 t 2
+ == r3(t)zay k) | [ -t ) %/r) (x)ax
2la to

4 ———

+

t -2
5 [Tne1(tg) 2, v (g | { (x-t)" “/r) (x)dx

~2) 1o
(n-2) 0

1 t X -
+ / L J " x-5)""2|a(s) | |n(y(g(s))) |asdx

_ n-2 r, (x)
(n=-2) ! to 1 to

1
+
(n-2)1 on=2

t 1 X n-2
{ 60 { (x-s)" *|b(s) |dsax. (13)
0

Due to conditions on rl(t) we find that each term on the right hand side of

(13) except possibly last two are bounded, and since h(t)/t < m, there exist

constants Kl' K2 and K3 such that

X -
Lozl S) |a(s)lly(g(5))|dsdx

ly@en| <x +x, f I

+ K

t - n-2
f fxiﬁfﬁ;—lbmﬂdﬁx.
X

3
t
0

(o]

Rearranging constants still further we get

lats) ]|y (g(s)) |dsdx

lyen| <x, +x, [ x

2-8
to t0 X
£t (X |b(s)|dsax
t s { { xz'B
0 0
t t 1
=K + Ky [/ -5 dx la(s)||y(g(s))|as
t s X
(0]
t
+ K { f —E:E-d |b(s) |as (14)

by change of order of integration. Now
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t
x2-B

ax < ¢ (15)

s
for some constant C > o since o < B < 1. Thus the last term in (14) is

bounded, since fm|b(s)]ds < o,

From (14) and (15), there exists a positive constant Kg such that

lyaen] < x5 + x5 ¢ [Flata)|lyigis)) |as.
t
0
By Gronwall's inequality y(g(t)) is bounded and the proof is complete.

THEOREM (3.1). Subject to the conditions of Lemma 3.2 all oscillatory
solutions of equation (1) approach zero.

PROOF. Suppose to the contrary that some oscillatory solution y(t)
of (1) is such that

lim sup |y(t)]| > 3a > o (16)
t >

for some number d. Let T > to be large enough so that for t > T we
have (from lemma 3.1)

Ty (6) (Zy(e) d

< - i = —— -
t1alen-i-2 ,i=1, 2, , n-2 (17)
It follows from (4) that
r)(t)y' (t)
-+ 0 as t > o, (18)

tn-2
Let now Ty > T be a zero of y(t) so that for t > TO' (17) and (18) imply

T (02 (ye)

3 . <-'r i=ll 21 - n-2,
ilgt¢gn—i-2 n
and
r_ (t)y'(t) d
_1__._2_ < - . (19)
th- n

Integrating (1) between [To, t] we have
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®) = £y (tg)y" (1) f1 ax + [ 1
0 0 0

1

t X
+ r3(T) 2,y (Ty) '{ 1/x, (%) .{ll/rz(xz) [’(Zl/r.'3(x)‘.ixdx2<ixl

0 0 0
t X X
4 —mmee SRR CSEARTC N b VRN (e VN O sV
T T T
0 0 0
(x)dxdxp_p === dx,
t xl X -2 X -1
- '{' 1/5) (x,) '{ 1/z,(xy) -=-- J " r, %1/ " a(x)h(y(g(x)))dxdx,_;
0 o To To
- dxl
t X1 X2 X -
+ [ 1/r) (x)) J 1z, (x,) f /x4 (x4) === I lb(x)dxdxn_l --- ax;.  (20)
To To To To
Since y(t) is bounded, let ly(g (t))l < Cl for some positive constant
Cl' From (20) we have
lye)] < lrl(To)y (T )l f 1/r) (x)dx + = Ir._,('ro)z y(To) | f (x-Tg) 4
T rllx’
To 0
1 ' t 2
+ r (T )2,y (T) | [ (x-T,)%/r, (x)dx
2102 3V 0 "2 0 T (o] 1
0
+ ———
-2
et T yax
(n~2) 1o—2 T, 0 1
c,m n-2
+_ fl/r ) [* (x-8)""2|a(s) |dsax
(n—2)!un'2 TO TO
t -
y—2— 1 0 [ -5 2 b(s) |asax. (21)
(n-2)1a"2 ¢

0 To

Now there exists a constant D i > o such that for each i

o T, 1)
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t i-2
41 (To)21Y (Tp) b, [5 (x=Tg)
aiyy «0—B
t 1
ri+1(Tg)Z3Y (Tp) [f ———dx
T D -i4+2-
alrt i To x"E B
Ti+l (To)Ziy (To) D . 1 1 + 1
i i —i4+1- n-1+1-B n-i+l-B8
oty n-i+l-R8 t To
4
n
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(22)

in view of (17), conveniently large enough choice of To) and the fact that

B

< 1.

Similarly, as it was shown in the later part of inequality (14) (by

changing the order of integration) it is easily shown that a large choice of

T

results in

0
Cim
1 t _
) f 1/z, (x) fx(x—s)“ 2|a(s) lasax| <&
(n-2)to TO TO n
and
t Ol
"'JL":E ] l/rl(x) fx(x-s)n 2|b(s)|dsdx 5.%..
(n-2) !an TO To

From (21), (22), (23) and (24) we get

ly

From (25) we see that

ly

(t)|i(%+%+---%) =a

(23)

(24)

(25)

if we choose a large enough To, then for all t Z-TO'

(t)l < d. But this contradicts (16) for any positive d. The proof is now

complete.

(t

EXAMPLE (3.1). The equation
(eby' (£))")" + et 2My(t-m) = 27t sin t + e tsin t

+ 4tet cos t - 3¢t cos t - e 3t sin t,

(26)
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t>T has y = e 2t sin t as an oscillatory solution approaching zero. All
conditions of Theorem 3.1 are satisfied. Hence all oscillatory solutions of
(26) vanish at o,

Our next theorem leads to a necessary and sufficient criteria for all

oscillatory solutions of equation (1) to vanish at o,

THEOREM (3.2) Suppose a(t) > o L = () 1 ) for
4. Bup " r(t) B/’

o
o j_B <1 and f a(t)dt < ® ., Further suppose that b(t)/a(t) approaches a
finite limit as t + ®. Then a necessary and sufficient condition for all

oscillatory solution of (1) to approach zero is

lim [b(t)]| = o . (27)
t*° a(t)
PROOF. (SUFFICIENCY). Suppose that E%%%-* o as t + ©, Since

[“a(t)at < ®, we have [7|b(t)|dt < ®. By Theorem 3.1 all oscillatory
solutions approach zero.
(NECESSITY). Let y(t) be an oscillatory solution of (1).
Dividing (1) by a(t) we have

T (Fnog ez (== (513" (€)1 ) '=2)* + hiy(g(t) = eF (28)

Now y(t) *o as t + <. Suppose to the contrary that

lim [p®)| 5 A > o. (29)
e a(t) ~

S{pce h(y(g(t))) *- o, (28) from (29) reveals that there exists a large T
such that for t > T, Zn_ly(t) > o. But then y(t) is nonoscillatory, a
contradiction. The proof is now complete.

EXAMPLE (3.2). Consider the equation

sin(lnt)

30
— (30)

(tZY'(t))' + %5 y() = %3 (sin(2,t) - cos(ipt)) +

Here all conditions of Theorem 3.2 are satisfied. Hence all oscillatory

solutions approach zero. In fact vy(t) = sin(lnt)/t3 is an oscillatory
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solution of (30).
The necessity part of Theorem 3.2 leads us to the following theorem.
1

THEOREM (3.3). Suppose Ty = ()(1/t“'e) for some B such that
1

00
0 < B < 1. Further suppose that [ a(t)dt <®, a > o and b(t)/a(t) is
bounded. Then all oscillatory solution of equation (1) approach zero as
t > o,
00

PROOF. Since [ a(t) < © , boundedness of b(t)/a(t) implies
00
f ]b(t)ldt < o, cConditions of Theorem 3.1 hold. The proof is complete.

Our next Theorem gives conditions when oscillatory solutions do not
approach limits.

THEOREM (3.4). Suppose a(t) > o and 1lim inf|b(t)|/a(t) > o.
t >

Let y(t) be an oscillatory solution of equation (1). Then

lim suply(t)l > o.

t > o
PROOF. Suppose to the contrary that y(t) o as t *> «, Then
h(y(g(t))) = o. From equation (1)

377 | 1 G - ) ()Y () ) '==) | + nty (e | > [be)]/ace).

279

This shows that Zn_ly(t) is eventually positive contradicting the fact that

y(t) is oscillatory.

REMARK. It is to be noted that the conditions

1 - 1 ) - P .
rl(t) - O<tn"8) 12 Ia(t)dt < and ! |b(t)|dt <

are not needed here.
EXAMPLE (3.3). 2all oscillatory solutions of the equation
y''(t) + y(t-2m) = 2 (31)

satisfy lim sup]y(t)l > o since this equation satisfies all conditions of
t > @

Theorem 3.4. y(t) = 2 + 2 cos (t) is one such solution.
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Next theorem gives nonoscillation criterion.

THEOREM (3.5). Suppose a(t) > o, [ a(t)dt < © and
1
r, (¢) O(

and b(t)/a(t) is bounded. Then all solutions of equation (1) are nonoscil-

i é) » 0 < B <1l. Further suppose that 1lim inflb(t)l/a(t) > o
en-

t > >

latory.

PROOF. Suppose to the contrary that y(t) is an oscillatory solution
of (1). Since all conditions of Theorem 3.3 are satisfied, y(t) * o as
t >, Thus h(y(g(t))) * o. From equation (1)

1
a(t)

| (rpq (2o () (=== (x  (£)Y' (€)1 ) '===) '] > [b(e) |/a(t) - [nlyg@®)))]. (32)

(32) suggests that Zn_ly(t) > o eventually, contradicting the fact that y(t)
is oscillatory. The proof is mow complete.
EXAMPLE (3.5). The equation

(33)

TJH.

1.2, . 1 _1
(5tY (t)) +t—2Y(t) —t—2+

satisfies all conditions of this theorem. y(t) = l/t2 is a nonoscillatory
solution of (33).

THEOREM (3.6). Suppose [“late)|at < ® ana |[“bt)at| = ®. Then all
oscillatory solutions of (1) are unbounded.

PROOF. Suppase to the contrary that some oscillatory solution y(t)
satisfies |y(t)| f_co for some C0 > o. From equation (1) on integration

for t > T.

t t
lzpq ®)Zp oy) | + | Mz _ym]| + com{‘ la(s)|as > l'{ b(s)ds|. (34)

(34) yields that zn_zy(t) assumes a constant sign eventually, contradicting
that y(t) is oscillatory. The proof is now complete. The following example
shows that under the conditions of Theorem 3.6, it is possible to have

bounded nonoscillatory solutions.
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EXAMPLE (3.6). The equation

5/2 ot ey 1yt 4 o S
O R S (U v

satisfies all conditions of Theorem 3.6. It has y(t) = 1/t as a bounded
nonoscillatory solution.

THEOREM (3.7). Suppose J la(t)]dt < © and /"bt)dt = + ®. Further
suppose that ri(t) is bounded i =1, 2, ---, n-1. Then all solutions of
equation (1) are unbounded.

PROOF. Due to Theorem 3.6 we only need to prove it for a nonoscillatory
solution. Let y(t) be nonoscillatory and bounded. From inequality (34) in
the proof of Theorem 3.6 it follows that lzn_zy(t)l + ® as t * ©. Since
z, oY = (rn_zzn_3y(t))' and T2 is bounded, we have 1z, jy(t) + t .
Proceeding this way we find that y'(t) * * ® forcing y(t) + t . The
proof is now complete by contradiction.

FINAL, REMARK. Theorem 3.1 improves our main result in (9] (c.f [11])
vhere it was shown that oscillatory solutions of

r(e)y' () DD 4+ ae)nlyige))) = £(t) (35)
approach zero subject to:
lawy |t72ae < =, [7]£e) [t"%aL <

and

1 _(/_l )
£(t) O(t__'gn_ +r 0% B<1.

The restriction on r(t) cannot be weakened i.e. B cannot be greater than

or equal to 1 as the following example shows.

® EXAMPLE (3.7). The equation

2yt (e))r 4 —— > y(t) = Cos (A (Ant)) 3‘-"1“(%(1%”) _C°s(9'n(!'n;))
t(L ) te )3 t(L t) t(2,t)

t>o (36)
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has y = sin(in(lnt)) as an oscillatory solution which does not have a limit

at «© . Only the condition on r(t) is violated. We see that for n = 3
1 1
= =T so that =1
r(t) tn- B
even though fw 1 dt < o,
r(t)

10.

11.
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