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ABSTRACT. Some inequalities for the Wallis functions are proved. The results

of this paper are consequences of some characterization of convex functions.

A generalization of a result of Boyd (i) and an extentlon of an inequality

of Gantschl (3) are obtained.
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The aim of this note is to show that some inequalities for the Wallis

function

r( + )w(, s) r( + s) (’ s) R+ x (0, ), ()

are natural consequences of the property of convex functions or of differ-

entlable functions. Indeed, our results are, to some extent, consequences



228 C.S. IMOEU

of the followlng characterization of convex functions.

THEOREM 1. A real-valued function is convex on a closed interval

I C R if and ol.y if for every point: x e "", the function

(x) (xo)
X -------+ X I,

X X
O

(2)

is non-decreaslnE on Z. In particular, if is convex on I, u # v, x y,

u < x, v < y, for all u, v, x, y I, then

v-u y-x (3)

The proof of the theorem is well known; see for example, ([3], pp. 15-18).

It is, therefore, omitted.

THEOREM 2. Let u, v, x, y w and z be positive real-numbers satisfying

u # v, w # z, u < x < w, x < y < z and v < y.

Then the following inequality is valid

V U

Fr z l(U)j i r-(x) <- (4)

PROOF. Since the function q / logT(n), rl R+, is convex, it follows

from inequality (3) that

ogr(v) -,osr,(u) < ,togr(y),- ,ogr(x) < logr(z) .- logr(w)
v-u y-x z-w

(5)

provided u, v, x, y, w and z satisfy the hypothesis of the theorem. Since

inequality (5) is equivalent to inequality (4), the proof of the theorem is

complete.

COROLLARY I. For (, @) e R+ x [0, i], we have

r(m+ + 1) < (m+ + e) z-e mZ. (6)
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PROOF. Set u m+ , m+. + I, x m+ + 8, y m+ + i,

w m+ + 8 and z m+ + 1 + 8.

Then inequalities (5) reduce to inequalities (6).

The case 0 and 0 < e < 1 is due to Gautschi ([3], 3. 6. 51).

Inequalltles (6) in the form

i < r (m + %, +. 8,) < I

(m + + 8)i-8 r(m + + i) (m+ )I-8

were obtained by Lazarevi and Lupas [2] who made use of the fact that the

Gamma function is logarithmic convex and an unpublished result of Lupas

on inequalities involving the Gamma function.

We now prove a more general result which contains, as a special case,

an imporved version of Boyd’s result [i], namely,

1 2

}% (m + )1 1 r(m + i) < {.{m + + 32m + 32
<

i 3 ir(m + z-w) m + y + 32m + 32

(7)

We first obtain the following results on differentiable functions:

THEOREM 3. Let i and 2 be two differentiable real-valued functions

on an open interval S in R. Let x, y, u, v e S, x # y, u w. Then there

exists e (0, I) such that for every positive real number

(y) (x) 2 (v) 2 (u)

y-x v-u

+ ana-l[l(X + na(y x)) 2(u + na(v u))]. (8)

PROOF. Consider the function

() v uF l(X + a(y x)) y -a x
2(u + ka(w u).



230

This function is dlfferentiable on [0, i]. By the usual Mean Value Theorem

for dlfferentlable functions, we obtain the desired concluslon.

THEOREM 4. Let be a differentlable real-valued function on an open

interval S in R and let ’ be non-decreaslng on S.

Suppose u, v, x, y ,S, u # v, x # y and either x > u, v > y or x < u,

v < y. Then, for some a Z+ (the set of positive integers) such that
0

(I u)(x- u) + u(y- v) > 0, 0 < u < i, >
O

(9)

have

_(y)-(x) > (v)- (u)
y-x v-u (io)

We note, however, that inequality (i0) is valid if x > u, y > v and a

is an arbitrary positive real number.

PROOF. Let i 2 @ in Theorem 3. The assumptions on x, y, u and v

imply that x- u
is an arbitrary real number between 0 and I.x-u+v-y

X USuppose o < <
x- u +v- y

< i. Then, for all Z+,
X-- U X-- Un < If, however, 0 < < < I, there existsx-u+v-y x- u+v-y

X Uu Z+ such that for all _> ao, a Z+, --x- u V-y< Hence, in

either case (i a)(x- u) + a(y_ v) > 0, for all u e Z+, > The

concluslon follows by Theorem 3 and the non-decreaslng character of ’.
We remark on passing, that inequality (i0) is strict unless is a con-

stant or linear function. Furthermore, inequality (i0) is reversed if is

non-increaslng.

COROLLARY 2. Let be a twice differentiable real-valued convex function

on an open interval S in R. Let x, y, u and v satisfy the conditions of

Theorem 4. Then inequality (i0) holds if inequality (9) is valid. The

inequality is reversed if is concave.
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PROOF. Since # is convex on S, " is non-negatlve on S. Hence #’ is

non-decreaslng on S. If, however, is concave, ’ is non-lncreaslng on S.

Consequently, the conclusion of the corollary follows from Theorem 4.

An immediate consequence of the above corollary can be obtained by

specializing . For example, if we take (a), a c R+, as logF(=), then thls

function satisfies the condition of Corollary 2. Consequently, if inequality

(9) holds and x, y, u, v satisfy the conditions of Theorem 4, we have

y x
r(y) > rr(v) v- u

r(x) "r(u)
) ()

For m >---12, let y R- {o} be such that , o < < i. Put

m +_, y m + i, u m + S(m) and v m + i +’S(m) where < S(m) <x

Since x- u > 0, y v < 0 and < 8(m) < , inequality (ii) holds if

and only if for some positive integer a,

Hence

% r(m + 1)(m + 8 (m)) <
r(m +1/2)

1 1/2[ (..)
c

(.)
o 1

if <_ O(m) < i ], 0 < <
Letting a /-, we get

1 1B(m,) !
r(m + 1) if i @(m) <_ (12)(m +
r(m

Now write v m + i, u m + 2
I-, y m + i + B(m) and x m + O(m). Then

x- u < 0 and v- y < O. Consequently, inequality (ii) holds if and only if
a

I < i < v y
Equivalently,

x u

provided

e(m))1/2 r(m + 1)(m + > (13)
.}r(m+ )

1/2[ ()o . (o<_ 8(m) < i- ], < ) < i;
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1
a condition which reduces to 8(m) -.

Combining inequalities (12) and (13), we obtain

r(m+ )(m + 8(m)) < < O(m) < .
r(m + 1/2)

The converse of this result was obtained by Watson [’4], namely, if

(14)

rm + Z) (m + e(m))
% i

1 then<S(m) < for m >_-

1 1<_ e (m) <_- or m >_ O.

and

i i iFor m >-, < e(m) <, we obtain

m+ -2r(m+ i)

r(m+) r(m+ )
{
r(m + I)

(m +1/2) %
< {, },

m+1/2+ e(m+2I-)

Hence, this inequality and inequality (14) combined yield

(m + e(m)} r(m + i)
(m + , }< < ’[

1 ir(m + ) m +7+ 8(m +g)
(15)

1 1
where < e(m) <

1 1
Taking %(m) = + ’32m + 3’2’ m 1,2, we obtain inequality (7).

On putting e(m) 1/4 + .1.
36

32m+ 8 + 4m- 3

we obtain an inequality due to

Slavi ([5], inequality (12)).

A result which is better than any one known, except for the formula (15) of

Slavi’s paper [5] is obtained by putting
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1 ie (m) - + 3632m+ 8 + 4m+ 5

It is our conjecture that formula (15) of Slavi’s paper [5] can be obtained

from our general result, namely inequality (15), by appropriate choice of

1 (R)]
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