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ABSTRACT. 1In [1] E. L. Reiss obtained a multivariable expansion of the problem
Lly] =y" + 2ey' +y =0, t >0; y(0;e) =0, y'(0,e) = 1 by means of a tech-
nique which does not employ the traditional method of using a secularity con-
dition in obtaining higher order approximations. In this paper Reiss' tech-

nique is formalized and new results are established.

0. INTRODUCTION.
Consider the problem
Llyl = y" + 2ey' +y=0, ('=%39,t>0; (0.1)
y(0;e) = v, y' (0,e) = s. (0.2)
where Y and 8 are constants independent of €. This problem will be referred

to as (P1l). We seek a formal expansion of the form
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M
JJ M
y= L €y (to,...,tN) + R (t;€) (0.3)
J=0

where the time scales are defined by

t; = e, j=0,1, ..., N (0.4)

Our task is to determine the coefficients yJ so that (0.3) constitutes a
"generalized uniform asymptotic expansion" in an interval of t. Definitions
to be given later will make clear the nature of these expansions.

When (0.3) and (0.4) are substituted into (0.1) we get an expression

of the form
M+2N
tyl= £ | 7| +urh -0 (0.5)
%=0 J+k=1,
0<J<M
where
zi =0if k<0
J_ 3 J
o= Ve g *Y
(e o}
= Iyl o+l L 1<k (0.6)
isj=k T3t k-1
0<i, j<N
= Iyl , M2 <k <N
i+j=k ji
0<i,j<N
J
z3 = 0 , k> 2N

To determine the st we set the coefficients of el to zero for £ =0, ..., M
while M successively assumes the values 0, 1, 2... . The solutions of the re-
sulting equations involve arbitrary functions of N variables which must be
found by imposing additional conditions. These conditions are supplied by

+1 M+N

further setting the coefficients of eM s +ees E to zero. Finally, to make

the coefficients determinate (0.3) is substituted into (0.2) and the initial
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values of the st are chosen so that (0.2) is satisfied as 'closely'" as possible.

Specifically, when (0.3) is substituted into (0.2) we get

M
v= 1 &y @ « o
J=o0
and
M+N M
§= 31 & 3 vl (8)":—:“ (0)
2=0 J+k=4 k
0<J<M
0<k<N
where dﬁ denotes the vector (0, 0,..., 0) corresponding .to to = t1 = ... = tN

= 0. Equating the coefficients of like powers of € in the above as far as

possible we obtain

-

Y@ = v, vy, (0 =38 0.7
o

J o J o=

y (0) = 0; z yt (0 =0;J, 2=1,...,M (0.8)
J+k=42 k
0<J<M
0<K3N

At the end of the formal process we are left with the following problem

for the error term:

M+2N
L[RM] = rM(t;E) = - bX & pX z‘]: (0.9)
2=M+N+1 J+k=2
0<J<M
M MeN
o =0 & @=-M-- 1 & = O (0.10)
2=M+1 J+k=2 k
0<J<M
0<k<N

In this analysis we delineate explicitly the form of the coefficients yJ and
establish the uniform validity of the formal expansions over the infinite

interval [0,»). Estimates of the magnitude of the error are made from (0.9)
and (0.10).
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1. GENERAL DEPENDENCE OF COEFFICIENTS ON TIME SCALES

By setting the coefficients of el to zero in (0.5) for 2 =0, ..., M,
...,M+N as M ranges through the values 0,1,2,... it can be shown that for each

J we obtain

20 =0, k=0,..., N-1 (1.1a)

K
z; = - {2° e+ 207 (1.1b)

The (N+1) equations in (1.1) give the dependence of yJ on the time scales ty

tl, ..., t., respectively. It is worth noting that dependence on to’ e tN-l

N
is the same for each J. We will now solve these equations to get the coeffici-

ents yJ. If we assume that N is infinite, then we can explore the dependence

. J_J_J
. by solving Zo =7, = 22

1 = ... = 0. From (0.6) we

of yJ on to’ tl’ tz,

obtain the first four equations:

J J
ytoto +ty =0 (1.2)
Yoo *YL =0 (1.3)
o'l [o]
Zyi e, " Yi t *2Yi =0 (1.4)
02 11 1
J J J
2yt e * 2yt et 2yt =0 (1.5)
o3 172 2

The equations can be solved one after another. From (1.2) we get

J it, -it,
+ BT, e (1.6)

1
y =A (tl,tz,...)e

Now substitute (1.6) into (1.3) and require that (1.3) be satisfied identically.

We obtain

Y1 2 -t

. _ 1
Je ; BB =B (t2’t3"")e

1 2
A" = A (t2’t3’°'
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Hence
-t it -it
yJ = e 1 [%z(tz,...)e o Bz(tz,...)e oi] (1.7)

Similarly, we substitute (1.7) into (1.4) and so on. Proceeding in this manner
we find that yJ is sinusoidal in tz but is independent of t3 (from (1.5)). If
we carry the process still furthe; we find that yJ is sinusoidal in t4 but is
independent of ts-

By induction we establish

-t i(t +...+0,.t,.)
J _ 1 o 2j°2j
y =e [‘(tz(ju),...) e
-i(t +.. t,.)
o 2j 2] .
+ B(tZ(j+1),...) e ], j=1,2, ... (1.8
ao =1 , o, = - 1/2 ,
and (1.9)
.1 e
a2j =-3 (azaz(j_l) + ..+ a2(j-1)a2)’ if j >2

We have therefore shown, by directly solving the governing differential
equations, that when N is infinite the coefficients yJ are sinusoidal in the
even time scales to’ tz, ... and independent of the odd scales ts, ts,
Dependence on tl is exponential as shown in (1.8).

A link between the form (1.8) and the exact solution of (P1) can be
established. The exact solution is

y = Ye'Et cos [/ 1 - et } + Lé:l%l et sin [/ 1 - ezt] (1.10)

1l-¢

The desired link consists in showing from (1.9) and mathematical induction

that azj is the coefficient of ezJ in the binominal expansion of (1 - 62)}&.
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That is, we can write a,. alternatively as follows

2j
1
/2

] (1.11)
J

= (-1)J
Now let us consider the practical case in which N is finite. As can
be easily seen from (1.1), dependence on the time scales to,...,tN_1 will be

exactly as in the case where N is infinite. In order to be able to write

expressions in a compact form, we will modify the definition for a,. when

2j
2j > N. Let
N/2 if N is even
. (1.12)
(N-1)/2 if N is odd
Then
a2j =0if j <0
a =1, 0, =-1/2
1
1 i|?
%25 777 Cfagen T P gep®) T (DT 223
(1.13)
=1
%onear =77 Cpr¥n *ocr * Oga%pp) »larin
=_ 1 2
%ns2n = 7 (Ogn)
%n+2r = 0 P T ‘

An immediate consequence of the results already established is that
it -it
y’ = AMiepe ©+Bltpe © L Na1 (1.14)
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-t
yJ e 1 [AJ(tN)e

et % m b2 m-1))

. BJ(tN)e -i(t0+...+a2(n_1)t2(n_1))] N(>2) even (1.15)

)

i(t +...+a2nt2n

-t
7o g

J
+ B (tN)e

-i(t +.. 040, t, )
° n 2“] N(>1) odd (1.16)

In (1.15) and (1.16) n and the frequencies o,. are given by (1.12) and (1.13),

2j
respectively.

After a lengthy but straightforward algebra it can be established that
-t i(t +...+a, t, )
J _ 1 o 2n 2n
y (to,...,tN) = e [}’q(tN)e

(1.17)

-i(t +...40, t, )
= [¢) 2n 2n
+ Pq(tN)e }

where Pq are complex valued polynomials in t,,, the last time scale in the set

N!

t; = edt, j=0,...,N (1.18)

and n and the o,. are given by (1.12) and (1.13). The degrees of the poly-

2i

nomials depend on both N and J as follows

J/2 , if J is even and N is even
q = (J-1)/2 , if J is odd and N is even (1.19)
J , if N is odd

The following form of yJ is sometimes convenient to use:
J(t t.) = e_tl 2Re{P (t, )} cos(t +...+a, t, )
Y {tgseeenty) = € q'N o """ "2n 2n

- 21m{Pq(tN)} sin(t°+...+a2nt2n)] (1.20)
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2. VALIDITY OF THE EXPANSIONS.

We seek a "generalized uniform asymptotic expansion" (see [1] and [3])
in an interval D, which is assumed to be generally finite and possibly infinite.
More specifically, we use the following definition

DEFINITION 1

Let {Sj(t;e)} be a sequence of functions defined for t € D and 0 < €

< ey for some €, 0, and let {fj(e)}, € - 0, be an asymptotic sequence. Then
M

L S.(t;e) is a generalized Uniform asymptotic expansion of y(t;e) in D to
j=o

(M+1) terms if the remainders satisfy

X k
R7(t;e) = y(t;e) - L

J

Sj(t;e) = 0(f (2.1)

k+1)
)

for each ke {0,1,...,M}.

In our analysis the element of the sequence, Sj(t;e) will be in the

ek. We wish to show that

JJ
form €'y (to,...,tN) and fk

J J
€y (to,...,tN)

™M

J=0
is a uniform asymptotic expansion of the solution of (P1l) in the sense of
(2.1) where the interval D is infinite. To do this we need estimates of
the error terms RM(t;e).

Since L is a differential operator with constant coefficients, an
integral representation of the solution of (0.9) can be obtained by means

of the appropriate Green's function. With the integral representation

estimates can be made as follows:

|RM(t;€) iaYM + 8/e) ||Mtse)

l,tZ_O (2.2)
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where

and a and B are positive constants.

° I (2.3)

J
>0

One of the goals of our analysis is to determine the link between |RM|
and the initial conditions of (P1). This is achieved by expressing YM in terms

of those initial conditions. The following lemma gives the required expressions.

Lemma.
arM
The quantity T (0) = YM can be written in the following terms
dRM M+(2s+1)
T O = Yz =Y z Tyse1 €
o<s<[(N-1)/2]
+ 6§ z H2r eM+2r’ if M is even (2.4)
1<r<[N/2]
art M+ (25+1)
T @Y= T e
0<s<[(N-1)/2]
sy oz A ™, ifMis odd (2.5)

1<r<[N/2]

The constants IIj and Aj depend on the quantities a [x] is defined as the

2i°
greatest integer less than or equal to x.

The proof of the lemma is lengthy but straightforward and is omitted
for brevity.

Before considering the main theorem, let us introduce an additional

notation which will enable us to state the theorem in a compact form. Define

the function zl(t;e) as follows:
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2o(t;€) = - Iz 2.
J+k=2
0<J<M
Using (2.6) we can rewrite equation (0.9) in the form
M M M+2N
L[R"] = r (t;e) = X € zl(t;s) (0.
2=M+N+1

Now let us state the theorem.
Theorem

If the time scales are given by (0.4), then for N > 1 (0.3) is a
(M+1) - term - (N+1) - time generalized uniform asymptotic expansion of the
solution of (P1l) in the interval [0,~). The error RM(t;s) is bounded in

magnitude as follows:

Riee)] < a Y] + /) [1Mctse)] |, if M is even

<A+ ey /) 1M |], if M s oad .

where YZ and Yz are given by (2.4) and (2.5), respectively;

M+2N
M L
[ e | S e € lzy(t5)]| 2.
=M+N+

and Al’ A2, Bl’ B2 are positive constants.
Proof
From equations (0.9), (2.2) - (2.5) we see that the theorem will be

proved if we can show that

J
Hzgsedll =11 =z |l (2.
% Jenes K
0<J<M

6)

9b)

7)

8)

9)

exists for all t > 0. From (0.6) we see that for each %, zy is a sum of terms

like yJ, yg and yi e these terms are therefore of the form
k ji
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-t 51n(t°+...+a2nt2n)

(2.10)
cos(t°+...+a2nt2n)

where q < M. With t, =et and ty = et it can be shown that the quantities in
(2.10) are bounded by (eN'q)qqe-? for t > 0. Therefore ||z, (t;e)|| exists.
(2.7) follows from the lemma and equation (2.2) while (2.8) follows from (0.9b)
and the triangle inequality. Thus the theorem is proved. Q.E.D.

The following corollaries are easily established.
Corollary 2.

If N =1, then RM = 0(€M+1) for all M.
Corollary 3.

Let N be greater than 1 and Yy = 0. Then,

@ ’ = o™l if M is odd
an ’RY = oe™?) if M is even
(I1I1) yJ = 0 when J is odd and N is even.

Corollary 4.

Let N be greater than 1 and § = 0. Then

av) ’ = o@e™?) if M is odd
w) RM = O(eM+1) if M is even

3. GENERAL RESULTS

The first set of results to be presented in this section concerns the
role of the number of time scales in the expansions. We give and clarify the
following results originally stated by Reiss [1]:

There are a minimum number of time scales, namely two,
that are required to obtain a uniform asymptotic expansion. (RI)
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For a fixed number of terms in the expansion three or
more time scales give uniform expansions with the smallest
estimate of the remainder. In particular, three time scales (RII)
will always give uniform expansions with the smallest estimate
of the remainder.

From (RII) it is seen that there may be no justification in using N>2
(i.e. more than three time scales). However, expansions using N>2 may be de-
sirable for certain purposes as is the case when more accurate frequencies are
desired. Recall the error bound given in (2.7) and (2.8). One of the terms

in this bound consists of a sum of terms of the form
N+2-q, q.-q
(e ) q'e 7, 0<q<M, M+N+1 < & < M+2N

Thus for fixed M this term can be decreased indefinitely by simply
increasing the number of time scales. Only the term depending on the initial
conditions cannot be so diminished. In a given initial value problem (M fixed)
is it legitimate to ask if we can select the least number of time scales which
give the smallest estimate of the remainder? Levine and Lubot [4] and Obi [2]
have explored this question in some detail. The answer is in the affirmative.
In many cases three is the least number, but with certain initial conditions
(which depend upon €) one can indeed increase the accuracy indefinitely by
merely increasing the number of time scales (even for M=0).

We now turn to the role of the odd scales est, est, ... in the multi-
time expansions. Reiss had reasoned that since these scales do not appear
in the expansions of the exact solution the multi-time method need be applied

using only the scales

- 20D

k t, k=2,3,...N

t =¢t,t

o =€et,..., t

1

The present analysis clearly shows that expansions involving the odd scales
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exist. We reproduce some of them:

o 1 2
=Yy (t :tlstzsts) + ey (to:-°°,t3) + 0(€ )

y = o
-t -t
R, 1 1 1 1 2
= e 51n(t0 -3 tz) + € [ﬁ- 8 t3 e cos(to -3 tzi] + 0(e”) (3.1)
_ .0 1 2.2 4
y=y (to""’ts) + gy (to""’ts) + g’y (to""’ts) + 0(e’)
_tl

cos(t, - %tz):l (3.2)

N -

s} 1
e sm(to-—tz)-fel:-gtse

-t
211 1 .2 1 _. 1 4
€ [5 a - o tz) e sin(t, - > tz):l + 0(e)

+

In these expansions y=0, 6=1 and tk is given by (0.4). Observe that R =
0(62) and R1 = 0(62) so that Corollary 3 still holds. This will appear con-
fusing at first until we further observe that in reality y1 is '"small". Since

Y 3 et

t = e’te and te'Et is uniformly bounded we see that eyl = 0(54). Hence

38
this term does not improve the order of magnitude estimate of the error. The
approach taken in this analysis has thus revealed a larger class of generalized
uniform asymptotic expansions. The results of [1] can be recovered in one of
two ways. The first is to work with the complete set (0.4) but with N even.

In this case dependence on the odd scales drops out in direct computations.

Another way is to seek expansions of the form

o 2 =2
y=y (tos---:ts) + azy (to,.-.,ts) + R

That is, we assume beforehand that the coefficient with the odd superscript
vanishes. In this case, however, we obtain the same expansion as would re-

sult if we used only to,tl,t (This should be regarded as a coincidence

2°
since such results do not carry over when we consider equations with variable

coefficients [2]).
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The role of the initial conditions in determining the approximations is
very interesting. When N(>2) is even the coefficients yJ, J an odd integer,
are all proportional to Y = y(0). These coefficients therefore vanish when ¥ =
0 but not otherwise (constrast Corollaries 3 and 4)., The analysis in [1] con-
sidered only the case Y = 0 and the incomplete picture thus presented certainly
gave rise to the false impression that the odd coefficients will vanish for
other cases.

Another important set of observations concerning the influence of
the number of time scales is fundamental to the understanding of multi-time
expansions. This analysis shows clearly two kinds of dependence on individual
time scales. The first kind is definitely a property of the differential
equation involved. Thus if we assume that N is infinite only ty by and the
even scales appear in our expansions. These scales are precisely those which
will appear in the uniformly valid expansions of the exact solution. The
second kind of dependence may be characterized as a truncation effect. This
is a consequence of using only a finite number of time scales and manifests

itself in the form of polynominals in the last scale, t It is due to this

N
effect that we are able to get a class of expansions involving the other odd
scales. These expansions were not anticipated, and in fact, were discounted

in [1].

4. FINAL REMARKS

The general results reported in this paper are common to a broad class
of generalized uniform asymptotic expansions. The basic feature of the method
reported in [1] is found to be the imposition of secularity conditions by pick-
ing approximations of a certain form. The most general form of such approxi-

mations have been dealt with in [5] and [6] where it has been shown that time
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scales may be derived from the governing differential equation.
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