

RESEARCH NOTES

A CURIOUS INTEGRAL

DAVID R. MASSON

Department of Mathematics
University of Toronto
Toronto Ontario M5S 1A1
Canada

(Received November 22, 1994)

ABSTRACT. A double integral which came from a cohomology calculation is evaluated explicitly using the properties of ${}_3F_2$ and ${}_2F_1$ hypergeometric functions.

KEY WORDS AND PHRASES: double integral, hypergeometric functions.

1992 AMS SUBJECT CLASSIFICATION CODE: 33C90.

1. INTRODUCTION.

The problem of evaluating the integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \frac{(1 - 4 \cos^2 s \cos^2 t)}{(1 + 8 \cos^2 s \cos^2 t)^{3/2}} ds dt$$

has been proposed by A. Lundell. The computer algebra language Maple tells the user that it can not be evaluated explicitly but evaluates it numerically to seven decimal places in a couple of seconds. Mathematica, on the other hand, reduces it to the evaluation of a single integral by performing one of the single integrals.

The integral arose as a reduction of a surface integral on a torus which came in relating the cohomology of $\mathbf{R}^3 - (C \cup L)$ and $\mathbf{R}^3 - C$ where C is the circle $x^2 + y^2 = a^2$ in the xy -plane and L is the z -axis and where numerical calculations suggested the value $\pi/4$ [2, p.19]. The purpose of this note is to prove this conjecture.

We first consider the more general integral

$$I(a, b, c) := \int_0^{\pi/2} \int_0^{\pi/2} \frac{(1 + b \cos^2 s \cos^2 t)}{(1 + a \cos^2 s \cos^2 t)^c} ds dt. \quad (1.1)$$

We find that $I(a, b, c)$ can be expressed as a sum of two ${}_3F_2$'s with argument $-a$. Although there are no explicit general formulas for the analytic continuation of ${}_3F_2$'s something remarkable happens when $c = 3/2$. In this case each ${}_3F_2$ can be expressed as a product of ${}_2F_1$'s of argument $-a$ which may now be analytically continued throughout the complex a -plane cut along $(-\infty, -1]$. A further simplification occurs when $b = -4$ with $I(a, -4, 3/2)$ being expressed as a single product of two ${}_2F_1$'s. A final remarkable simplification occurs with $a = 8$

when each of these ${}_2F_1$'s can be explicitly summed in terms of gamma functions. As an end result we then obtain

THEOREM 1.

$$I(8, -4, 3/2) = \frac{\pi}{4}. \quad (1.2)$$

In the next section we prove this result using the theory of hypergeometric functions where

$${}_{r+1}F_r\left(\begin{matrix} a_1, a_2, \dots, a_{r+1} \\ b_1, b_2, \dots, b_r \end{matrix}; z\right) := \sum_{n=0}^{\infty} \frac{(a_1, a_2, \dots, a_{r+1})_n}{(b_1, b_2, \dots, b_r)_n} \frac{z^n}{n!}, \quad (1.3)$$

$$(a)_n = \Gamma(a+n)/\Gamma(a), \quad (a_1, a_2, \dots, a_r)_n = \prod_{j=1}^r (a_j)_n.$$

The following formulas will be needed.

$${}_3F_2\left(\begin{matrix} 2\alpha - 1, 2\beta, \alpha + \beta - 1 \\ 2\alpha + 2\beta - 2, \alpha + \beta - 1/2 \end{matrix}; z\right) = {}_2F_1\left(\begin{matrix} \alpha, \beta \\ \alpha + \beta - 1/2 \end{matrix}; z\right) {}_2F_1\left(\begin{matrix} \alpha - 1, \beta \\ \alpha + \beta - 1/2 \end{matrix}; z\right), \quad (1.4)$$

$${}_3F_2\left(\begin{matrix} 2\alpha, 2\beta, \alpha + \beta \\ 2\alpha + 2\beta - 1, \alpha + \beta + 1/2 \end{matrix}; z\right) = {}_2F_1\left(\begin{matrix} \alpha, \beta \\ \alpha + \beta - 1/2 \end{matrix}; z\right) {}_2F_1\left(\begin{matrix} \alpha, \beta \\ \alpha + \beta - 1/2 \end{matrix}; z\right), \quad (1.5)$$

$${}_2F_1\left(\begin{matrix} a, b \\ c \end{matrix}; z\right) = (1-z)^{-a} {}_2F_1\left(\begin{matrix} a, c-b \\ c \end{matrix}; \frac{z}{z-1}\right), \quad (1.6)$$

$${}_2F_1\left(\begin{matrix} a, b \\ c \end{matrix}; z\right) = (1-z)^{c-a-b} {}_2F_1\left(\begin{matrix} c-a, c-b \\ c \end{matrix}; z\right), \quad (1.7)$$

$$c(c-1)(z-1) {}_2F_1\left(\begin{matrix} a, b \\ c-1 \end{matrix}; z\right) + c[c-1 - (2c-a-b-1)z] {}_2F_1\left(\begin{matrix} a, b \\ c \end{matrix}; z\right) \quad (1.8)$$

$$+ z(c-a)(c-b) {}_2F_1\left(\begin{matrix} a, b \\ c+1 \end{matrix}; z\right) = 0,$$

$${}_2F_1\left(\begin{matrix} a, b \\ a+b+1/2 \end{matrix}; z\right) = {}_2F_1\left(\begin{matrix} 2a, 2b \\ a+b+1/2 \end{matrix}; \frac{1}{2} - \frac{1}{2}(1-z)^{1/2}\right), \quad (1.9)$$

$${}_2F_1\left(\begin{matrix} a, b \\ a+b-1/2 \end{matrix}; z\right) = (1-z)^{-1/2} {}_2F_1\left(\begin{matrix} 2a-1, 2b-1 \\ a+b-1/2 \end{matrix}; \frac{1}{2} - \frac{1}{2}(1-z)^{1/2}\right), \quad (1.10)$$

$${}_2F_1\left(\begin{matrix} a, b \\ 1+a-b \end{matrix}; -1\right) = 2^{-a} \frac{\Gamma(1+a-b)\Gamma(1/2)}{\Gamma(1-b+a/2)\Gamma(1/2+a/2)}. \quad (1.11)$$

These formulas are in [1], (9) and (8) p. 186, (3) and (2) p. 105, (30) p. 103, (10) and (13) p. 111, and (47) p. 104 respectively.

2. THE PROOF.

To prove Theorem 1 we first establish four lemmas.

LEMMA 2.1. Let

$$u_n := \int_0^{\pi/2} \cos^{2n} t dt, n = 0, 1, \dots \quad (2.1)$$

Then

$$u_n = \frac{\pi}{2} \frac{(1/2)_n}{n!}. \quad (2.2)$$

PROOF. This result is well known. An integration by parts yields $u_n = \frac{2n-1}{2n} u_{n-1}$, $n \geq 1$. Clearly $u_0 = \pi/2$. Iterating we get (2.2).

LEMMA 2.2. If $|a| < 1$ then

$$I(a, b, c) = \frac{\pi^2}{4} \left[{}_3F_2 \left(\begin{matrix} c, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{matrix}; -a \right) + \frac{b}{4} {}_3F_2 \left(\begin{matrix} c, \frac{3}{2}, \frac{3}{2} \\ 2, 2 \end{matrix}; -a \right) \right]. \quad (2.3)$$

PROOF. In (1.1) we expand $(1 + a \cos^2 s \cos^2 t)^{-c}$ using the binomial theorem and do the integration. Using Lemma 2.1 we then obtain (2.3).

We now specialize to the value $c = 3/2$.

LEMMA 2.3. If $|a| < 1$ or $a = 1$ then

$$\begin{aligned} I(a, b, 3/2) = & \frac{\pi^2}{4} \left[{}_2F_1 \left(\begin{matrix} \frac{5}{4}, \frac{1}{4} \\ 1 \end{matrix}; -a \right) {}_2F_1 \left(\begin{matrix} \frac{1}{4}, \frac{1}{4} \\ 1 \end{matrix}; -a \right) \right. \\ & \left. + \frac{b}{4} {}_2F_1 \left(\begin{matrix} \frac{3}{4}, \frac{3}{4} \\ 1 \end{matrix}; -a \right) {}_2F_1 \left(\begin{matrix} \frac{3}{4}, \frac{3}{4} \\ 2 \end{matrix}; -a \right) \right]. \end{aligned} \quad (2.4)$$

PROOF. We use (1.4) for the first ${}_3F_2$ on the right of (2.3) and (1.5) for the second ${}_3F_2$ on the right of (2.3).

Having established (2.4) for $|a| < 1$ one may use the properties of ${}_2F_1$'s to obtain an analytic continuation of (2.4) throughout the complex a -plane cut along $(-\infty, -1]$.

We now specialize to the values $b = -4, c = 3/2$.

LEMMA 2.4.

$$I(a, -4, 3/2) = \frac{15\pi^2 a}{128} {}_2F_1 \left(\begin{matrix} \frac{1}{4}, \frac{1}{4} \\ 1 \end{matrix}; -a \right) {}_2F_1 \left(\begin{matrix} \frac{5}{4}, \frac{9}{4} \\ 3 \end{matrix}; -a \right). \quad (2.5)$$

PROOF. In (2.4) we put $b = -4$ and apply (1.7) to the first and third ${}_2F_1$ on the right of (2.4). The result is

$$I(a, -4, 3/2) = \frac{\pi^2}{4(1+a)^{1/2}} {}_2F_1 \left(\begin{matrix} \frac{1}{4}, \frac{1}{4} \\ 1 \end{matrix}; -a \right) \left[{}_2F_1 \left(\begin{matrix} \frac{3}{4}, -\frac{1}{4} \\ 1 \end{matrix}; -a \right) - {}_2F_1 \left(\begin{matrix} \frac{3}{4}, \frac{3}{4} \\ 2 \end{matrix}; -a \right) \right]. \quad (2.6)$$

We now apply (1.6) to the ${}_2F_1$'s in the brackets above and then use (1.8). This gives

$$I(a, -4, 3/2) = \frac{15\pi^2 a}{128(1+a)^{5/4}} {}_2F_1 \left(\begin{matrix} \frac{1}{4}, \frac{1}{4} \\ 1 \end{matrix}; -a \right) {}_2F_1 \left(\begin{matrix} \frac{3}{4}, \frac{5}{4} \\ 3 \end{matrix}; \frac{a}{1+a} \right). \quad (2.7)$$

After another application of (1.6) to the second ${}_2F_1$ above we obtain (2.5).

PROOF OF THEOREM 1. We now specialize to the case $a = 8, b = -4, c = 3/2$. In (2.5) we put $a = 8$. We use (1.9) and (1.11) to get

$${}_2F_1 \left(\begin{matrix} \frac{1}{4}, \frac{1}{4} \\ 1 \end{matrix}; -8 \right) = {}_2F_1 \left(\begin{matrix} 1/2, 1/2 \\ 1 \end{matrix}; -1 \right) = \frac{\Gamma(1)\Gamma(1/2)}{2^{1/2}\Gamma^2(3/4)}. \quad (2.8)$$

Using (1.10) and (1.11) we also get

$${}_2F_1 \left(\begin{matrix} \frac{5}{4}, \frac{9}{4} \\ 3 \end{matrix}; -8 \right) = \frac{1}{3} {}_2F_1 \left(\begin{matrix} \frac{3}{2}, \frac{7}{2} \\ 3 \end{matrix}; -1 \right) = \frac{\Gamma(3)\Gamma(1/2)}{3\Gamma(5/4)\Gamma(9/4)2^{7/2}}. \quad (2.9)$$

Thus

$$I(8, -4, 3/2) = \frac{\pi^2 \Gamma^2(1/2)}{32 \Gamma^2(3/4) \Gamma^2(5/4)} \quad (2.10)$$

where we have used the above ${}_2F_1$ evaluations together with $\Gamma(1) = 1, \Gamma(3) = 2$ and $\Gamma(9/4) = 5\Gamma(5/4)/4$. A final use of the duplication formula [1.(15), p. 5] yields $\Gamma^2(1/2) = \pi \cdot \Gamma^2(3/4) \Gamma^2(5/4) = \pi^2/8$ and the theorem is established.

ACKNOWLEDGEMENT. This research was partially supported by NSERC (Canada).

REFERENCES

1. A. Erdélyi, Ed., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
2. A. Lundell, Potential Theory and Cohomology, Lecture Notes, Department of Mathematics, University of Colorado, Boulder, 1993.

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es