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ABSTRACT. The process of changing a topology by some types of its local discrete expansion preserves
s-closeness, S-closeness, semi-compactness, semi-T;, semi-R,, i € {0,1,2}, and extremely dis-
connectness Via some other forms of such above replacements one can have topologies which satisfy
separation axioms the original topology does not have
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1. INTRODUCTION

Throughout the present paper (X,7) is a topological space (or simply a space X) on which no
separation axioms are assumed unless explicitly stated. For any B C X, cl, B (resp int, B) denotes the
closure (resp interior) of B A subset B is said to be regular open (resp regular closed) if B = int,
(cl.(B)) (resp B =cl, (int,(B))) A subset B of a space X is said to be 7-semi open [12] (resp 7-
regular semi-open [2]) if there exists a T-open (resp. T-regular open) set U satisfying U C B C cl,U B
is 7-semi-closed [3] if the set X — B is 7-semi-open. The family of all regular open (resp regular semi-
open, semi-open) sets in X is denoted by RO(X,7) (resp RSO(X,7),SO(X,7)) The union (resp
intersection) of all 7-semi-open (resp 7-semi-closed) sets contained in B (resp containing B) is called the
T-semi-interior [3] (resp T-semi-closure [3]) of B, and it is denoted as s-int, B (resp s — cl, B) A space
X is said to be extremely disconnected (denoted by E.D ) if for every open set U of X, cl,U is open in 7
The concept of local discrete expansion of a topology was first introduced by S P Young in 1977 [17],
"Let (X,7) be a topological space and A be any subset of X The topology
7[A] ={U — H:U € 7,H C A} is called the local discrete expansion of 7 by A A space X is semi-
T, [13] (resp semi-T;, [1]) iff for z, y € X, = # y there exist U and V € SO(X,7),z € U andye V
such that UNV = ¢ (resp cl,UNcl,V =¢). Semi-T; and semi-T; were introduced to topological
spaces [13] by replacing the word "open" by "semi-open" in the definitions of Ty and T} respectively A
space X is semi-Ry [6] iff for each semi-open set U and z € U, s — cl,{z} C U A space X is semi-R;
[6] iff for =, y € X such that s — cl.{z} # s — cl.{y} there exist disjoint semi-open sets U and V' such
that s —cl,{z} C U, and s —cl,{y} C V. A space X is called cid [15] if every countable infinite
subspace of X is discrete. A space X is semi-compact [7] (resp s-closed [5], S-closed [16]) if for every
cover {V,:i €I} of X by semi-open sets of X, there exists a finite subset Ip of I such that
X=U{V,:i€ly} (rtesp X = Uscl(V,):i € Iy}, X = Ucl(V,) : 1 € Ip}).

REMARK 1.1. For a subset A of a space (X,7) we say that A satisfies condition (Cy) if
AUU = ¢, foreveryU € 7— {X}.

Listed below are theorems that will be utilized in this paper

THEOREM 1.1 [14] If 7 and 7' are two topologies on X such that 7 C 7/, then RO(X,T) =
RO(X,7") iff cl,G = cl+G for every G € 7/ [equivalent iff int, F = int,- F, for every F € 7]

THEOREM 1.2 [11] If X is a space, and A C X satisfying (Cy) Then, cl, 4G = cl, G, for every
G e 1[A]



748 ME ABD EL-MONSEF, AM KOZAE and A A ABO KHADRA

THEOREM 1.3 [4] If X is a space, and A € SO(X,7) such that ACc BCcl,A Then,
B e SO(X, 1)

THEOREM 1.4 [10] If X is a space, and B C X, thens — cl, B = BUint,cl, B

THEOREM 1.5 [8] A space X is E D iff for every pair U and V of disjoint 7-open sets, we have
c.UNcl,V=¢

THEOREM 1.6 [5] A space X is s-closed iff every cover of X by regular semi-open sets has a finite
subcover

THEOREM 1.7 [15] (a) A space X is cid if every countable infinite subset is closed

(b) Any infinite cid space is T}

THEOREM 1.8 [17] Let A be any subset of X Then (4, 7[A] N A) is discrete

THEOREM 1.9 [17] Let Abe a closed subset of X Then (A, 7 N A) is a discrete subspace of X iff

T=T [A]
THEOREM 1.10 [9] Let X be a T)-space Then X is cid iff countable subsets have no limits
points

2. ON LOCAL DISCRETE EXPANSION

THEOREM 2.1. If (X, 7) is a space and A C X, then
() SO(X,7[A])c{B—H:Be€SO(X,7),H C A}

(i) If A satisfying (C)), then the inclusion symbol in (i) is replaced by equality sign

PROOF. (i) Let W € SO(X,7[A]), then there exists V € 7[A] such that V C W C clr gV
Then (U — Hy) CW C clrjq)(U — Hy), where U €7, HHCA Put Hy=UnNH,, then Hy C A,
and (U-H;)UH, CWUH; Cclyq(U ~ H)UH, Then U C WUH, CclyU C cl,U,
and (WUH;) € SO(X,T) Pt B=WUH,, and H=H,-WcCA Then B-H =
WUWUnH,)-(H -W)=W.

(ii) By Theorem 1.2, the proof is obvious

REMARK 2.1. From Theorem 2.1, it is easy to prove that, for any A C X

SO(X, 1) C SO(X,T[A])

THEOREM 2.2. If (X, 7) is a space, and A C X satisfying (C;) Then:

(i) SO(X,7) = SO(X,[A)).
(i) RSO(X,7) = RSO(X,[A]).

PROOF. In general SO(X,7) C SO(X,7[A]). To prove the converse, let W € SO(X, 7[A)),
then there exists V € 7[A] satisfying V C W Ccl; V. Then (U - H)C W C clyq(U — H),
U € 7,H C A. There are two cases.

(@ U#X,thenU — H=U Since cl,4U = cl,U, then W € SO(X, 7).
b) U=X, then (X-H)CW Ceclg(X—-H)Ccl,(X—-H). Since ANU =¢, then
c;AC(X-U), and cl,ANU = ¢, implies to c/,HNU = ¢, for each U € 7— {X} Hence
U¢cl,H, and int,cl,H = ¢, and H is a 7-semi-closed set Thus (X — H) € SO(X,7) From
Theorem 13, W € SO(X, )
(ii) By Theorems 1.1 and 1 2, the proof is obvious
COROLLARY 2.1. If X is a space, and A C X satisfying (C;) Then

@) (X, ) is semi-T, iff (X, 7[A]) is semi-T, (¢ € {0,1,2}).

(ii) If (X, 7) is semi-T;, then (X, 7[A]) is semi-T.
(iii) If (X, 7) is semi-R,, then (X, 7[A]) is semi-R, (: € {0, 1})

PROOF. By Theorem (2 2), the proof is obvious

THEOREM 2.3. If X is a space, and A C X satisfying (C;). Then s — cl, (4G = s — cl.G, for
every G € T[4]

PROOF. Let G € 7{A], then s — cl(o)\G =G Uint, (4 cl; (4G =G Uint,cl, 4G =G Uint,cl,G=
s — cl,G [by Theorems 1 1,12 and 1 4]
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THEOREM 2.4. If X is a space, and A C X satisfying (C;). Then (X, 7) is E.D. iff (X, 7[A])isED

PROOF. Let (X,7)be ED,W € 7[A] ThenW =U - H,U € 7,H C A

But clg(U — H) = cl U = cl,U, and cl.U € 7. Thus cl; 4W € 7[A], and (X, 7[4]) is ED
Conversely, let (X,7[A]) be ED,, and U,V € 7 such that ¢, UN¢cl,V #¢. By Theorem 12,
clygU Nelyq)V # ¢, thenU NV # ¢ [by Theorem 1.5]. Hence (X, 7) is ED.

THEOREM 2.5. If X is a space, and A C X satisfying (C;). Then (X, 7) is semi-compact (resp s-
closed) iff (X, 7[A]) is semi-compact (resp. s-closed).

PROOF. By Theorem 2.2, the proof'is obvious.

THEOREM 2.6. If X is a space, and A C X, and (X, 7[A]) is S-closed (resp. s-closed), then (X, T)
is S-closed (resp. s-closed).

PROOF. Since SO(X,T) C SO(X,T[A]), the proof is obvious.
3. L - T; ANDQ — L — T; SPACES

Let R be a topological property which is preserved under expansions

DEFINITION 3.1. A topological space (X, 7) is called L — R if there exists a subset S C X and
S # X, such that (X, 7[S]) has R.

PROPOSITION 3.1. If 7 C 7/, then forany S C X, 7S] C 7'[S].

REMARK 3.1. If rC 7 and 7 is L — R, then 7’ is also L — R, ie. any expansion of L — R
topology on X is also L — R.

DEFINITION 3.2. Leti=1,2,2.5and j =0,1,2,2.5. We say that (X,7)is Q — L — T, if it is
L — T, and T, where j < 1.

Now we are going to show that some of the properties L — T, and Q — L — T, are satisfied for some
spaces but not for some other spaces.

PROPOSITION 3.2. For a space X, the following diagram is easily obtained.

Tgé =>Q—L—T2% =>2THh=>Q-L-T1=>T1=2=Q-L-T1 =T,

EXAMPLE 3.1. Let X = {a,b,c,d} and 7 = {¢, X, {a,b},{c,d}} is not Ty if A = {a,c}, then
7[A] = {¢, X, {b}, {d}, {b,d},{a, b}, {c,d},{b,c,d},{a,b,d}} is Ty. This exampleis Q — L — Tp.

The following is an example of a Q — L — Ty 5 but not Ty 5.

EXAMPLE 3.2. Let X = N x ZU{(—-1,0),(—1, — 1)} where N is the natural numbers and Z
the integers. The topology has as its base sets of the following forms:

{(m,n)}, n#0, m# -1
Un((@,0)) = {(@,0} U{(e,m) |Im| > n}, neN
Un((~11) = {(~ 1D} U{@@m)[a2nm >0}, neN

Un((~1, 1) = {(~ 1, =1} U{(e,m) |a > n,m < 0}, neN.

This space is T3 but not To 5 as (— 1,1) and (— 1, — 1) do not have disjoint closed neighborhoods.
Choosing A = N x (Z — {0}), the discrete expansion is the discrete topology and thus 75.

EXAMPLE 3.3. Let X = {a,b,c,d} and 7 = {¢, X, {b},{d}, {b,d}, {a,b},{c,d},{a,b,d},
{b,c,d}}, then T[A] = Discrete. ~ This example is Q@ — L — T} but not T} and is an example of a space
whichisnot @ — L — Ts.

EXAMPLE 3.4. Let X = {a,b,c} and 7 = {¢, X, {a,b}}. If A= {a,b}, then 7[A] = Discrete
This example isnot @ — L — T3.

The excluded point topology on an infinite set X is the family consisting of ¢ and all subsets of X not
containing a point p of X.

EXAMPLE 3.5. The excluded point topology is L — T} and not L — T (also is an example of
Q — L —T; butnot Ty).

PROOF. If X is an infinite set and p is the excluded point and A C X, then:

@) Ifp ¢ A, wehave T[A] = TU{X — B: B C A}. Thus 7[A]is T} but not T.
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(i) If p € A, then A is closed, and there are two cases

(a) If BC A,p € Binthis case any open set in 7[A] isopenin 7,ie 7 = 7[A]

(b) fBC A, p¢g Bas(i) Thust[A]=7U{X - B-BC A}

EXAMPLE 3.6. Let X =[0,1] and 7 = {¢, X,AC X - X — A is finite} If we take S = (0, 1],
then 7(S] 1s the Discrete space This example is Q@ — L — T, but not T

THEOREM 3.1. (X, ) is cid space iff 7 = 7[A] whenever A is a countable infinite subset of X

PROOF. We assume that (X, 7) is cid, then A is closed and discrete subspace By Theorem 19 we
have that 7 = 7[A] Conversely we assume that 7 = 7[A] By Theorem 1 8, we have that (A,7 N A) is a
discrete subspace of X and (X, 7) is cid space

THEOREM 3.2. Every space (X,7)is L — T,

PROOF. Assume that o € X We aim to prove that 7[X — {zp}] is Ty For this purpose let
z,y € X,z # y,if U € 7 is an open set containing z, then U — {y} is an open set in 7[X — {z0}] and not
containing y If zo = z, then X — {y} is an open in 7[X — {xzo}] and not containing y This completes
the proof

The following example illustrates a @ — L — T5 space but not T3

EXAMPLE 3.7. (Countable complement topology [16]) If X is an uncountable set, we define the
topology of countable complements on X by declaring open all sets whose complements are countable,
together with ¢ and X (X,7) is T} but not T Let A C X such that X — A is countable For
g € X — A, AU{zo} is T-open, and so (AU {xo}) — A = {zo} € T[A] For z¢ € A, A is T-open,
which means that A — (A — {zo}) = {zo} is 7[A]-open Thus 7[A] is discrete and consequently 75

UNSOLVED PROBLEM. If (X,7) is a space which does not have a property P, what are the
properties of the subset A that make (X, 7[A]) have P (for P = fixed property)
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