

APPLICATION ON LOCAL DISCRETE EXPANSION

M.E. ABD EL-MONSEF, A.M. KOZAE and A.A. ABO KHADRA

Department of Mathematics, Faculty of Science
Tanta University, Tanta, EGYPT

(Received June 2, 1992 and in revised form September 14, 1995)

ABSTRACT. The process of changing a topology by some types of its local discrete expansion preserves s -closeness, S -closeness, semi-compactness, semi- T_i , semi- R_i , $i \in \{0, 1, 2\}$, and extremely disconnectness. Via some other forms of such above replacements one can have topologies which satisfy separation axioms the original topology does not have.

KEY WORDS AND PHRASES: Near open sets, local discrete expansion, extremely disconnected, semi-compact, s -closed, S -closed, semi- T_i , semi- R_i , and cid spaces

1991 AMS SUBJECT CLASSIFICATION CODES: 54A10, 54D10, 54D30, 54G20

1. INTRODUCTION

Throughout the present paper (X, τ) is a topological space (or simply a space X) on which no separation axioms are assumed unless explicitly stated. For any $B \subset X$, $cl_\tau B$ (resp $int_\tau B$) denotes the closure (resp interior) of B . A subset B is said to be regular open (resp regular closed) if $B = int_\tau (cl_\tau(B))$ (resp $B = cl_\tau (int_\tau(B))$). A subset B of a space X is said to be τ -semi open [12] (resp τ -regular semi-open [2]) if there exists a τ -open (resp τ -regular open) set U satisfying $U \subset B \subset cl_\tau U$. B is τ -semi-closed [3] if the set $X - B$ is τ -semi-open. The family of all regular open (resp regular semi-open, semi-open) sets in X is denoted by $RO(X, \tau)$ (resp $RSO(X, \tau), SO(X, \tau)$). The union (resp intersection) of all τ -semi-open (resp τ -semi-closed) sets contained in B (resp containing B) is called the τ -semi-interior [3] (resp τ -semi-closure [3]) of B , and it is denoted as $s-int_\tau B$ (resp $s-cl_\tau B$). A space X is said to be extremely disconnected (denoted by E.D) if for every open set U of X , $cl_\tau U$ is open in τ . The concept of local discrete expansion of a topology was first introduced by S P Young in 1977 [17], "Let (X, τ) be a topological space and A be any subset of X . The topology $\tau[A] = \{U - H : U \in \tau, H \subset A\}$ is called the local discrete expansion of τ by A . A space X is semi- T_2 [13] (resp semi- T_2' [1]) iff for $x, y \in X$, $x \neq y$ there exist U and $V \in SO(X, \tau)$, $x \in U$ and $y \in V$ such that $U \cap V = \emptyset$ (resp $cl_\tau U \cap cl_\tau V = \emptyset$). Semi- T_0 and semi- T_1 were introduced to topological spaces [13] by replacing the word "open" by "semi-open" in the definitions of T_0 and T_1 respectively. A space X is semi- R_0 [6] iff for each semi-open set U and $x \in U$, $s-cl_\tau \{x\} \subset U$. A space X is semi- R_1 [6] iff for $x, y \in X$ such that $s-cl_\tau \{x\} \neq s-cl_\tau \{y\}$ there exist disjoint semi-open sets U and V such that $s-cl_\tau \{x\} \subset U$, and $s-cl_\tau \{y\} \subset V$. A space X is called cid [15] if every countable infinite subspace of X is discrete. A space X is semi-compact [7] (resp s -closed [5], S -closed [16]) if for every cover $\{V_i : i \in I\}$ of X by semi-open sets of X , there exists a finite subset I_0 of I such that $X = \cup \{V_i : i \in I_0\}$ (resp $X = \cup scl(V_i) : i \in I_0\}, X = \cup cl(V_i) : i \in I_0\}$.

REMARK 1.1. For a subset A of a space (X, τ) we say that A satisfies condition (C_1) if $A \cup U = \emptyset$, for every $U \in \tau - \{X\}$.

Listed below are theorems that will be utilized in this paper

THEOREM 1.1 [14] If τ and τ' are two topologies on X such that $\tau \subset \tau'$, then $RO(X, \tau) = RO(X, \tau')$ iff $cl_\tau G = cl_{\tau'} G$ for every $G \in \tau'$ [equivalent iff $int_\tau F = int_{\tau'} F$, for every $F \in \tau'^c$]

THEOREM 1.2 [11] If X is a space, and $A \subset X$ satisfying (C_1) Then, $cl_{\tau[A]} G = cl_\tau G$, for every $G \in \tau[A]$

THEOREM 1.3 [4] If X is a space, and $A \in SO(X, \tau)$ such that $A \subset B \subset cl_\tau A$ Then, $B \in SO(X, \tau)$

THEOREM 1.4 [10] If X is a space, and $B \subset X$, then $s - cl_\tau B = B \cup \text{int}_\tau cl_\tau B$

THEOREM 1.5 [8] A space X is E D iff for every pair U and V of disjoint τ -open sets, we have $cl_\tau U \cap cl_\tau V = \emptyset$

THEOREM 1.6 [5] A space X is s -closed iff every cover of X by regular semi-open sets has a finite subcover

THEOREM 1.7 [15] (a) A space X is cid if every countable infinite subset is closed

(b) Any infinite cid space is T_1

THEOREM 1.8 [17] Let A be any subset of X Then $(A, \tau[A] \cap A)$ is discrete

THEOREM 1.9 [17] Let A be a closed subset of X Then $(A, \tau \cap A)$ is a discrete subspace of X iff $\tau = \tau[A]$

THEOREM 1.10 [9] Let X be a T_1 -space Then X is cid iff countable subsets have no limits points

2. ON LOCAL DISCRETE EXPANSION

THEOREM 2.1. If (X, τ) is a space and $A \subset X$, then

- (i) $SO(X, \tau[A]) \subset \{B - H : B \in SO(X, \tau), H \subset A\}$
- (ii) If A satisfying (C_1) , then the inclusion symbol in (i) is replaced by equality sign

PROOF. (i) Let $W \in SO(X, \tau[A])$, then there exists $V \in \tau[A]$ such that $V \subset W \subset cl_{\tau[A]} V$ Then $(U - H_1) \subset W \subset cl_{\tau[A]}(U - H_1)$, where $U \in \tau, H_1 \subset A$ Put $H_2 = U \cap H_1$, then $H_2 \subset A$, and $(U - H_1) \cup H_2 \subset W \cup H_2 \subset cl_{\tau[A]}(U - H_1) \cup H_2$ Then $U \subset W \cup H_2 \subset cl_{\tau[A]} U \subset cl_\tau U$, and $(W \cup H_2) \in SO(X, \tau)$ Put $B = W \cup H_2$, and $H = H_1 - W \subset A$ Then $B - H = W \cup (U \cap H_1) - (H_1 - W) = W$.

(ii) By Theorem 1.2, the proof is obvious

REMARK 2.1. From Theorem 2.1, it is easy to prove that, for any $A \subset X$

$$SO(X, \tau) \subset SO(X, \tau[A])$$

THEOREM 2.2. If (X, τ) is a space, and $A \subset X$ satisfying (C_1) Then

- (i) $SO(X, \tau) = SO(X, \tau[A])$.
- (ii) $RSO(X, \tau) = RSO(X, \tau[A])$.

PROOF. In general $SO(X, \tau) \subset SO(X, \tau[A])$. To prove the converse, let $W \in SO(X, \tau[A])$, then there exists $V \in \tau[A]$ satisfying $V \subset W \subset cl_{\tau[A]} V$. Then $(U - H) \subset W \subset cl_{\tau[A]}(U - H)$, $U \in \tau, H \subset A$. There are two cases.

- (a) $U \neq X$, then $U - H = U$ Since $cl_{\tau[A]} U = cl_\tau U$, then $W \in SO(X, \tau)$.
- (b) $U = X$, then $(X - H) \subset W \subset cl_{\tau[A]}(X - H) \subset cl_\tau(X - H)$. Since $A \cap U = \emptyset$, then $cl_\tau A \subset (X - U)$, and $cl_\tau A \cap U = \emptyset$, implies to $cl_\tau H \cap U = \emptyset$, for each $U \in \tau - \{X\}$ Hence $U \notin cl_\tau H$, and $\text{int}_\tau cl_\tau H = \emptyset$, and H is a τ -semi-closed set Thus $(X - H) \in SO(X, \tau)$ From Theorem 1.3, $W \in SO(X, \tau)$

(ii) By Theorems 1.1 and 1.2, the proof is obvious

COROLLARY 2.1. If X is a space, and $A \subset X$ satisfying (C_1) Then

- (i) (X, τ) is semi- T_i iff $(X, \tau[A])$ is semi- T_i ($i \in \{0, 1, 2\}$).
- (ii) If (X, τ) is semi- T'_2 , then $(X, \tau[A])$ is semi- T'_2 .
- (iii) If (X, τ) is semi- R_i , then $(X, \tau[A])$ is semi- R_i ($i \in \{0, 1\}$)

PROOF. By Theorem (2.2), the proof is obvious

THEOREM 2.3. If X is a space, and $A \subset X$ satisfying (C_1) . Then $s - cl_{\tau[A]} G = s - cl_\tau G$, for every $G \in \tau[A]$

PROOF. Let $G \in \tau[A]$, then $s - cl_{\tau[A]} G = G \cup \text{int}_{\tau[A]} cl_{\tau[A]} G = G \cup \text{int}_\tau cl_{\tau[A]} G = G \cup \text{int}_\tau cl_\tau G = s - cl_\tau G$ [by Theorems 1.1, 1.2 and 1.4]

THEOREM 2.4. If X is a space, and $A \subset X$ satisfying (C_1) . Then (X, τ) is E.D. iff $(X, \tau[A])$ is E.D

PROOF. Let (X, τ) be E.D., $W \in \tau[A]$. Then $W = U - H$, $U \in \tau$, $H \subset A$.

But $cl_{\tau[A]}(U - H) = cl_{\tau[A]}U = cl_{\tau}U$, and $cl_{\tau}U \in \tau$. Thus $cl_{\tau[A]}W \in \tau[A]$, and $(X, \tau[A])$ is E.D. Conversely, let $(X, \tau[A])$ be E.D., and $U, V \in \tau$ such that $cl_{\tau}U \cap cl_{\tau}V \neq \emptyset$. By Theorem 1.2, $cl_{\tau[A]}U \cap cl_{\tau[A]}V \neq \emptyset$, then $U \cap V \neq \emptyset$ [by Theorem 1.5]. Hence (X, τ) is E.D.

THEOREM 2.5. If X is a space, and $A \subset X$ satisfying (C_1) . Then (X, τ) is semi-compact (resp s -closed) iff $(X, \tau[A])$ is semi-compact (resp s -closed).

PROOF. By Theorem 2.2, the proof is obvious.

THEOREM 2.6. If X is a space, and $A \subset X$, and $(X, \tau[A])$ is S -closed (resp. s -closed), then (X, τ) is S -closed (resp. s -closed).

PROOF. Since $SO(X, \tau) \subset SO(X, \tau[A])$, the proof is obvious.

3. $L - T_i$ AND $Q - L - T_i$ SPACES

Let R be a topological property which is preserved under expansions

DEFINITION 3.1. A topological space (X, τ) is called $L - R$ if there exists a subset $S \subset X$ and $S \neq X$, such that $(X, \tau[S])$ has R .

PROPOSITION 3.1. If $\tau \subset \tau'$, then for any $S \subset X$, $\tau[S] \subset \tau'[S]$.

REMARK 3.1. If $\tau \subset \tau'$ and τ is $L - R$, then τ' is also $L - R$, i.e. any expansion of $L - R$ topology on X is also $L - R$.

DEFINITION 3.2. Let $i = 1, 2, 2.5$ and $j = 0, 1, 2, 2.5$. We say that (X, τ) is $Q - L - T_i$, if it is $L - T_i$ and T_j where $j < i$.

Now we are going to show that some of the properties $L - T_i$ and $Q - L - T_i$ are satisfied for some spaces but not for some other spaces.

PROPOSITION 3.2. For a space X , the following diagram is easily obtained.

$$T_{2\frac{1}{2}} \Rightarrow Q - L - T_{2\frac{1}{2}} \Rightarrow T_2 \Rightarrow Q - L - T_2 \Rightarrow T_1 \Rightarrow Q - L - T_1 \Rightarrow T_0.$$

EXAMPLE 3.1. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a, b\}, \{c, d\}\}$ is not T_0 if $A = \{a, c\}$, then $\tau[A] = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b\}, \{c, d\}, \{b, c, d\}, \{a, b, d\}\}$ is T_0 . This example is $Q - L - T_0$.

The following is an example of a $Q - L - T_{2.5}$ but not $T_{2.5}$.

EXAMPLE 3.2. Let $X = N \times Z \cup \{(-1, 0), (-1, -1)\}$ where N is the natural numbers and Z the integers. The topology has as its base sets of the following forms:

$$\{(m, n)\}, \quad n \neq 0, \quad m \neq -1$$

$$U_n((a, 0)) = \{(a, 0)\} \cup \{(a, m) \mid |m| \geq n\}, \quad n \in N$$

$$U_n((-1, 1)) = \{(-1, 1)\} \cup \{(a, m) \mid a \geq n, m > 0\}, \quad n \in N$$

$$U_n((-1, -1)) = \{(-1, -1)\} \cup \{(a, m) \mid a \geq n, m < 0\}, \quad n \in N.$$

This space is T_2 but not $T_{2.5}$ as $(-1, 1)$ and $(-1, -1)$ do not have disjoint closed neighborhoods. Choosing $A = N \times (Z - \{0\})$, the discrete expansion is the discrete topology and thus T_2 .

EXAMPLE 3.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, b\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}\}$, then $\tau[A] = \text{Discrete}$. This example is $Q - L - T_1$ but not T_1 and is an example of a space which is not $Q - L - T_2$.

EXAMPLE 3.4. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a, b\}\}$. If $A = \{a, b\}$, then $\tau[A] = \text{Discrete}$ This example is not $Q - L - T_1$.

The excluded point topology on an infinite set X is the family consisting of ϕ and all subsets of X not containing a point p of X .

EXAMPLE 3.5. The excluded point topology is $L - T_1$ and not $L - T_2$ (also is an example of $Q - L - T_1$ but not T_1).

PROOF. If X is an infinite set and p is the excluded point and $A \subset X$, then:

(i) If $p \notin A$, we have $\tau[A] = \tau \cup \{X - B : B \subset A\}$. Thus $\tau[A]$ is T_1 but not T_2 .

(ii) If $p \in A$, then A is closed, and there are two cases

- (a) If $B \subset A, p \in B$ in this case any open set in $\tau[A]$ is open in τ , i.e. $\tau = \tau[A]$
- (b) If $B \subset A, p \notin B$ as (i) Thus $\tau[A] = \tau \cup \{X - B : B \subset A\}$

EXAMPLE 3.6. Let $X = [0, 1]$ and $\tau = \{\phi, X, A \subset X : X - A \text{ is finite}\}$ If we take $S = (0, 1]$, then $\tau[S]$ is the Discrete space This example is $Q - L - T_2$ but not T_2

THEOREM 3.1. (X, τ) is cid space iff $\tau = \tau[A]$ whenever A is a countable infinite subset of X

PROOF. We assume that (X, τ) is cid, then A is closed and discrete subspace By Theorem 1.9 we have that $\tau = \tau[A]$ Conversely we assume that $\tau = \tau[A]$ By Theorem 1.8, we have that $(A, \tau \cap A)$ is a discrete subspace of X and (X, τ) is cid space

THEOREM 3.2. Every space (X, τ) is $L - T_0$

PROOF. Assume that $x_0 \in X$ We aim to prove that $\tau[X - \{x_0\}]$ is T_0 For this purpose let $x, y \in X, x \neq y$, if $U \in \tau$ is an open set containing x , then $U - \{y\}$ is an open set in $\tau[X - \{x_0\}]$ and not containing y If $x_0 = x$, then $X - \{y\}$ is an open in $\tau[X - \{x_0\}]$ and not containing y This completes the proof

The following example illustrates a $Q - L - T_2$ space but not T_2

EXAMPLE 3.7. (Countable complement topology [16]) If X is an uncountable set, we define the topology of countable complements on X by declaring open all sets whose complements are countable, together with ϕ and X (X, τ) is T_1 but not T_2 Let $A \subset X$ such that $X - A$ is countable For $x_0 \in X - A$, $A \cup \{x_0\}$ is τ -open, and so $(A \cup \{x_0\}) - A = \{x_0\} \in \tau[A]$ For $x_0 \in A$, A is τ -open, which means that $A - (A - \{x_0\}) = \{x_0\}$ is $\tau[A]$ -open Thus $\tau[A]$ is discrete and consequently T_2

UNSOLVED PROBLEM. If (X, τ) is a space which does not have a property P , what are the properties of the subset A that make $(X, \tau[A])$ have P (for $P =$ fixed property)

ACKNOWLEDGMENT. We would like to thank the referee for valuable comments and suggestions, especially Example 3.2, Example 3.7 and Theorem 3.2

REFERENCES

- [1] ABD EL-MONSEF, M E , Studies on some pretopological concepts, Ph.D Thesis, Tanta University (1980)
- [2] CAMERON, D E , Properties of S -closed spaces, *Proc. Amer. Math. Soc.* **72**(3) (1978), 581-585
- [3] CROSSLEY, S G and HILDEBRAND, S K , Semi-closure, *Texas J. Sci.* **22** (1971), 99-112
- [4] CROSSLEY, S G and HILDEBRAND, S K , Semi-topological properties, *Fund. Math.* **74** (1972), 233-253
- [5] DIMAIO, G and NOIRI, T., On s -closed spaces, *Indian J. Pure Appl. Math.* **18**(3) (1987), 226-233
- [6] DORSETT, C H , Semi- T_2 , semi- R_1 and semi- R_0 topological spaces, *Ann. Soc. Sci. Bruxelles ser. I*, **92** (1978), 143-159, M R 80 a 54026.
- [7] DORSETT, C H , Semi-convergence and semi-compactness, *Indian J. M.M.* **XIX**(I) (1981)
- [8] ENGELKING, R., *General Topology*, Warszawa, 1977.
- [9] GANSTER, M, REILLY, I.L. and VAMANAMURTHY, M K , On spaces whose denumerable subspaces are discrete, *Math. Bechnk* **39** (1987), 283-292.
- [10] JANKOVIC, D S. and REILLY, I L , On semi separation properties, *Indian J. Pure Appl. Math.* **16**(9) (1985), 957-964.
- [11] LASHIN, E F , A study on extensions of topologies, Ph D Thesis, Tanta University (1988)
- [12] LEVINE, N , Semi-open sets and semi continuity in topological spaces, *Amer. Math. Monthly* **70** (1963), 36-41
- [13] MAHESHWARI, S N and PRASAD, R , Some new separation axioms, *Ann. Soc. Sci. Bruxelles*, T 3(89) (1975), 395-407, MR, 52#6660
- [14] MIODUSZEWSKI, J and RUDOLE, L , H -closed and extremely disconnected spaces, *Dissertations Math.* **66** (1969).
- [15] REILLY, I L and VAMANAMURTHY, M K , On spaces in which every denumerable subspaces is discrete, *Math. Vesnik* **38** (1986), 97-102
- [16] THOMPSON, T , S -closed spaces, *Proc. Amer. Math. Soc.* **60** (1976), 335-338
- [17] YOUNG, S P , Local discrete extensions of topologies, *Kyungpook math. J.* **11** (1977), 21-24

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk