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ABSTRACT. Let X be an abstract set and £ be a lattice of subsets of X. Associated with the
pair (X, L) are a variety of Wallman-type topological spaces. Some of these spaces generalize very
important topological spaces such as the Stone-Cech compactification, the real compactification, etc. We
consider the general setting and investigate how the properties of £ reflect over to the general Wallman
Spaces and conversely. Completeness properties of the lattices in the Wallman Spaces are investigated,
as well as the interplay of topological properties of these spaces such as T3, regularity and Lindelof with
L.
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1. INTRODUCTION.

Let X be an arbitrary non-empty set and £ a lattice of subsets of X such that @, X € L. A(L)
denotes the algebra generated by £, and I(L) denotes the non-trivial zero-one valued finitely additive
measures on A(L). Various specific subsets of I(L) have been considered by researchers along with
specific lattices in these subsets together with their topologies of closed sets. They have been referred to
as generalized Wallman Spaces (see [3],[4],[5],[6),[8]). Questions concerning their topological
properties as well as completeness properties of some of these lattices have also been investigated. The
interplay between £ and the topological properties are extremely important. As noted, many specific
cases have been considered. We propose here to adopt a very general approach by considering
J(L) C I(L) to be any one of the sets usually considered as well as possibly new ones suggested in
section 2, and to consider the lattices of subsets of J(L) as well as the topology of closed sets determined
by them. In this general setting, we investigate the interplay between £ and these lattices and topological
properties.

In section 2, we review some of the standard notation and terminology and also introduce some
new subsets of I(L) for consideration. Section 3 is devoted to an analysis of completeness properties of
the lattices of J(L), and also to necessary and sufficient conditions for the topological spaces to be T5.
Many specific examples are also given.

Section 4 gives a detailed investigation of regularity matters of the lattices and of necessary and
sufficient conditions for the spaces to be Lindelof. Again a large number of examples is presented.
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2. BACKGROUND AND NOTATION

In this section, we introduce the notation that will be used throughout the paper, this will be
consistent with most of the standard notation used. (See for example [1],[3],[10].) Several items of
terminology will also be introduced, all of which are by now quite standard. Finally, we give a brief
survey of several of the more important generalized Wallman Spaces (see also [3],{4],[8]), and introduce
a few new ones. As indicated in the introduction, it is our aim to systematize the investigation of these
spaces by considering a general framework which subsumes all the special cases, and give proofs in this
setting which cover the known topological properties of these generalized spaces. Again let X be an
arbitrary set and let £ be a lattice of subsets of X such that @, X € £. £’ denotes the complementary
lattice to C, that is L' = {L'|L € £} where L' = X — L. Let I(L) be the set of finitely additive non-
trivial zero-one valued measures defined on A(L), the algebra generated by £. We now quickly specify
the following subsets of I(L):

Ir(L) designates the set of p € I(L) which are L-regular, that is u € Ir(L) if for all A € A(L)
we have p(A) = sup{u(L)|L € L,L C A}. I,(L) denotes the set of u € I(L) which are g-smooth on
L, that is p € I,(C) if L,, | @, L, € L implies u(L,) — 0. I°(L) are the elements of I(L) that are o-
smooth on A(L), that is, the countably additive 0-1 valued measures. I>(L) denotes the strongly o-
smooth measures of I(£); namely pu € I')(L) if L, | L, with L,, L € C implies u(L,) — p(L). For
any E € X, we define:

§(E) = inf{u(L')|EC L',L € L} .

It is easy to see that u' is 0-1 valued, u/(X) =1, 4/(0) =0, ¢’ is monotone and finitely
subadditive; that is y' is a finitely subadditive outermeasure.

In terms of ', we can define I,(C) where u € I (L) if p € I(C) and if u(L') =1 for L€ L
implies the existence of an L C L', L € £ with y/(L) = 1. I,(C) is frequently referred to as the set of
weakly regular measures.

Various completeness and repleteness notions have been considered (see [3],[4],[7]). We first
define for any p € I(L) the support of u to be S(u) = N{L € L|u(L) =1}. With this concept, we
then have that £ is replete if for any u € If(L), S(u) # 0; £ is prime complete if for any p € I,(L),
S(u) # 0; £ is weakly prime complete if for any u € I, S(u) # 0; L is fully replete if for any
p€I’°(L), S(u) # 0. We also recall that 7 € II(L) if m : £ — {0,1}, and that 7(X) =1, 7(@) =0, w
is monotone, and 7(A N B) = n(A)n(B), A, B € L. S(r), the support of , is defined in the obvious
way. Also 7 € I, (L) if 7 € TI(£) and if it is o-smooth on L.

There are a number of well-known lattice-topological properties such as disjunctiveness, normality,
compactness, etc. (see [5],[7] for further details). We make use of these properties, in particular, their
measure theoretic equivalents which will be used throughout sections 3 and 4. 6(L) denotes the lattice of
countable intersections of sets of L. L is a delta lattice if and only if 6(L) = L, that is £ is closed under
countable intersections. Finally 7(L) denotes the lattice of arbitrary intersections of £ sets. Further
related matters can be found in ([5),[6],[7],[8],[9]). The various sets of measures that have been
introduced can be topologized by taking suitable bases for the closed sets. For example, for the set
Ig(LC), we take W (L) = {W(L)|L € L}, where in general

W(A) = {p € In(L)Iu(4) = 1}

where A € A(L), as a base for the closed sets 7TW (L). Special cases of this where X is a topological
space and L a suitable topological lattice yield well-known examples such as the Stone-Cech
compactification, the Wallman compactification and the Banachewski compactification. Similarly we can
consider I(L) with V(L) ={V(L)|L € £} and where V(A)= {p € I(L)|u(A) =1}, where
A € A(L), as a base for the closed sets. Frequently, topological properties of these spaces reflect over
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to the original lattice and conversely. for example the space (I(L), 7V (L)) is always compact and Tp, it
is T if and only if I(L) = Ip(L) which, in turn, is equivalent to £ = (', that is £ is an algebra Also
V(L) is regular or disjunctive if and only if £ = £’ The Wallman space I%(L) with W, (L) as base for
the closed sets where

Wo (L) = {W,(L)IL € L}

and where W, (A) = {p € I$(L)|p(A) = 1}, A € A(L), and where L is disjunctive, is important since
it generalizes the real compactification of a topological space Necessary and sufficient conditions for this
space to be Lindelof are known in terms of £, and again, it is matters of this type that we wish to

generalize
The set I°/ (L) with V(%) (L) as a base where

VO(A) = {p € I(L)|u(A) = 1}
and
VL) ={VOL)L € L}

has not been considered but it can be treated in a way similar to the others It is easy to show that the
lattice V(?)(L) is weakly prime complete, and it is prime complete if and only if for any u € I\?)(L) there
exists vy € I¢°)(L) such that u < y(L). Also one can give necessary and sufficient conditions for this
space to be Lindelof which are similar to the case of I3(£) and W, (L) Again it is matters such as these
that we want to cover under a general approach which handles all the special cases

As a final particular case, we mention I,(L) with S(L) as a base for the closed sets, where for
Aec AL), S(A) ={p € L,(C)|p(A) =1} It is not difficult to show that I,(L) is then compact, and
it is Ty if and only if I,(L) = Ip(L) These types of properties will all be investigated in the next two
sections. Further specific generalized Wallman spaces can be found in ([2],[41,[51,[6],[71,[9])

3. GENERAL STRUCTURE 1

In this section we begin our unified treatment of generalized Wallman spaces thereby extending the
results in ([4],[5],[61,[71,[8])

Again, X is an arbitrary non-empty set, and £ is a lattice of subsets of X We assume for
convenience that 0, X € £. A(L) is an algebra generated by £, and I(£) denotes the finitely additive
non-trivial, 0-1 valued measures on A(L). We then designate by J(L) a subset of I(£) In the sequel
any J (L) considered will be one of the sets introduced in section 2, such as I(L), Ir(L), I, (L), I°(L),
I§(L), etc We then define H;(A) = {u € J(L)|u(A) = 1} where A € A(L). We write H instead of
H; when J is fixed. Let A, B € A(L), then the following properties are immediate

(1) H(AUB)=H(A)UH(B).

(2) H(ANB)=H(A)NH(B).

() H(A)=H(A)

(4) ACB= H(A)CH(B)

(5) if{plze X} CcJ(L)then H(A)C HB)= ACB

6) if{ps|lz € X} C J(L)then A= Bifandonlyif H(A) = H(B)

The only one that needs some comment is 5) If A ¢ B, then there exists an ¢ € A, z ¢ B Then
pu-(A) =1and p,(B) =0 Hence u, ¢ H(B) but u, € H(A), a contradiction In the case when J (L)
is Ir(L) or I (L) for example, then the condition in 5) and 6) will hold if and only if £ is disjunctive

We note that additional properties hold depending on the nature of J(L) For example if
J(L)=1,(L),then L,, | O, L, € L, if and only if H;(L,) | @; similarly L,, | L, L,,, L € L if and only
if Hy(L,) | Hy(L), if J(£) = I(L), etc
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We assume throughout that {u |z € X} C J(L) and consequently the correspondence £ — H(L)
where H(L) = {H(L)|L € L} is a lattice isomorphism. In the special cases J(C) = I(L), Ir(L),
L,(L), I°(C), I)(C), I4(L); and the various H;(L) have been designated in the literature by V' (L),
W (L), V,(L), V°(L), V9(L), W, (L) respectively (see for example [4]). The above isomorphism
enables us to set up a bijection: J(L) — J(H(L)) by mapping p € J(L) onto & € J(H(L)) where
E(H(A)) = p(A) and where A € A(L).

Note clearly that A(H(L)) = H(A(L)), and g is well-defined, since H(A) = H(B) where
B € A(L) implies A = B. The rest of the contention is clear.

Assume now that {u,|z € X} C J1(L) and J; C J,. Frequently, in the applications, J» C I,(L).
Again since £ — Hj, (L) is a lattice isomorphism, we have a bijection’ Jy(C) — Jo(H,, (L)) defined by
p — E, where p € Jo (L), and where we define Z(Hj, (A)) = u(A) for A € A(L). The proof of this is
not difficult. We also note that since J; (L) C Jo(L), then

Ji(Hy,(£)) C Jo(Hy (L)) -

We now prove the following:

THEOREM 3.1. With the above notation, we have vy € S(&Z) with p € Jo(L) and v € J,(£) if
and only if 4 < y(L).

PROOF. Suppose p € Jo(L), v € J1(L) and v € S(z). We note that S(z) = N Hy,(L,) where
the intersection is taken over those H;,(L,), Lo € L such that G(H,(L,)) = 1; but this is equivalent to
p(Ly) = 1. So v € S(i) implies y(L,) = 1; hence p < v(L).

Conversely, suppose for u € Jo(L), there exists v € J;(L) such that pu < ~(L). Since
S(@) = NHy(L,) where E(Hj(L,))=1=p(L,); it follows that ~(L,) =1, and clearly
yesSm). O

We give several specific applications of this theorem, thereby subsuming a large number of known
results. See ([4],[5],[6].[8)).

EXAMPLES.

(1) Let £ be disjunctive and consider J, = Ig, Jo = I,, Hj (L) = W,(L). Then we have: If

u < y(L) where p € I,(L), v € I§(L), then v € S(g), & € I,(W,(L)). Therefore W, (L)
is prime complete (in Ig) and conversely.

) LetJy=1I°Jy=1I,and H; (L) =V°(L). Then p < (L), p € I,(L), v € I°(L) if and

only if V?(L) is prime complete (in I°(L)).

(3) Let Jy=1I° J, =I®) and H; (L) = V°(L). Then p < 4(L), p € I), vy € I°(C) if and

only if V7 (L) is weakly prime complete (in I° (L)).
(4) As a special case of Theorem 3.1, we can take J; = J, = J, in which case u € S(z) where
p € J(L). This of course implies that V(L) is prime complete, V(?)(L) is weakly prime
complete, V?(L) is fully replete, V(L) is compact, and if £ is disjunctive, W, (L) is replete
and W(C) is compact, etc.
We next investigate lattice topological conditions for the lattice H;(L). We continue to assume that
{u,|zr € X} C J(L), and we consider the set J(C) and the lattice of subsets of H;(L). The following
two theorems show to advantage the general approach and even specific cases do not appear in the
references.

THEOREM 3.2, If Iz(L) C J(L), then H; (L) is T; if and only if Ir(L) = J(L).

PROOF. Suppose Ig(L) = J(L), then W (L) = H;(L) and so H;(L) is Ty as is well known
(see [7]). Conversely suppose H;(L) is T;. Let p € J(C); then there exits A € Ig(L) such that
w<AL). If p# A then there exists L € £ such that A € H;(L), u ¢ Hy(L). This implies
A(L) =0, u(L) = 1. Therefore u = X € Ig(L) and hence Ip(L) = J(£). O
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By taking J,(L) = J(L) and J>(L) = I(L) in our introductory remarks to this section, we have
that I(C) — I(H;(L)) given p — g with g(H;(A)) = p(A), A€ A(L) is a bijection  Also by
Theorem 3 1, we have that u < y(L) wherep € I(L) and v € J(L) is equivalent to v € S(z) With
these observations, it is now easy to show the following

THEOREM 3.3. Assuming as usual that {u.|z € X} C J(L) and considering H; (L) in J(L),
we have H; (L) is Ty if and only if p € I(L), p < v(L) and p < (L) where vy, o € J(L) imply
T =72
SPECIAL CASES:

(1) Let J = IR and let £ be disjunctive, then H; (L) = W (L) Hence W (L) is T3 if and only
if pelI(l) and pu <% (L), p <%(L), 1, 12 € IZ(L) imply vy =7  Thus if L is
disjunctive, then W (L) in Ig(L) is T> if and only if £ is normal

(2) Take J =1I° H,;(L)=W(L) Then W,(L) is Ty if and only if p € I(L), p < 1 (L),
g < %(L), 1, 1o € I5(L) implies v = 7

(3) LetJ=1I, and H;(L) =V,(L) Then V,(L) is T if and only if p € I(L), p < 1 (L),
B <72 (L), 1, 12 € L(L) imply v = 12

4. GENERAL STRUCTURE 2.
We have considered in section 3 the set J (L) and the lattice of subsets H;(L) Clearly by the basic
properties given in section 3 of the mapping H;, we can take H,;(L) as a base for the closed sets
TH (L) of a topology on J(L) Of course TH;(L) consists of arbitrary intersections of sets of H; (L)
Clearly H;(L) is Ty if and only if the topology is a T, topology This is not always the case, lattice
topological properties of a lattice do not always extend to the topological lattice 7L of closed sets, and
conversely. We note, for example, that £ is compact if and only if 7L is compact, in which case £
separates TL. L is countably compact if and only if 6(£) is countably compact, in which case £ separates
6(L) However L being normal need not imply that 7£ is normal or conversely This will be the case for
a pair of lattices £ C Lo if £; separates Lo. If L is regular then 7L is regular, but the converse is not
true in general However we do have the following theorem which is not difficult to prove
THEOREM 4.1. If 7C is regular and if £ is a delta lattice which is Lindelof, then £ separates 7L
We now return to J (L) and the lattice of subsets H;(L). We continue to assume throughout that
{p:|z € X} C J(L). The next theorem again displays the advantage of the general approach. It not
only subsumes the special cases in the literature, but gives a systematic and short treatment for all such
cases. We show:
THEOREM 4.2. The lattice H; (L) in J(L) is regular if and only if for any p € I(L), p < p(L)
andp < y(L) where p,y € I(L) and p € J(L) = v < p(L).
PROOF. Suppose for any p,y € I(L) and p € J(L), p < v(L) and p < p(L) imply v < p(L)
Then for any such p, v we have z, ¥ € I(H;(£)) and & < 7 on H;(L); this implies that S(3) C S(z)
If pe S(E), then p€ J(L) and p < p(L), but p < y(L); then by the condition of the theorem
v < p(L). Therefore p € S(7). Hence S(7) = S(@) and so H;(L) is regular Conversely, suppose
H;(L) is regular; let p,y € I(L) and p € J(L£) and p < p(L); then & <7 on H;(L) Therefore
y<p(£) O
SPECIAL CASES.
(1) Let J(L) = I{(L) where L is disjunctive Then H; (L) = W,(L) Then W, (L) is regular if
and only if for any pelI(L), p<~(L),y€I(L) and p < p(L), p € IZ(L) imply
v < p(L).

(2) Let J(L)=1I,(L) and H;(L) = V,(L) Then V,(L) is regular if and only if u,~v € I(L),
p€I,(L)and p < (L), p < p(L) imply v < p(L).

(3) Using the theorem we can show that V, (L) is regular if and only if I, (L) = I (L)
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Continuing to assume {p_|z € X} C J(L), we have:
LEMMA 4.3. If J(L) C I,(C) then L, | @, L, € L is equivalent to H;(L,) | 0.
PROOF. Suppose L, | §, L, € L; then by the basic properties H;(L,,) is a decreasing sequence
of sets and if 4 € H;(L,) for all n, then u(L,) =1 for all n. But u € J(L) C I,(L); hence this is a
contradiction. Therefore H;(L,) | . Conversely suppose H;(L,) | @ = L, is a decreasing sequence
of sets; by fundamental properties, if z € N L, for all n, then p, € H;(L,) for all n; this is a
contradiction. Hence L, | . 0O
By the lemma, we get that the correspondence m — 7, where w € II,(£), and where
7(Hy (L)) = n(L), for L € L, is a bijection between I, (L) and I1, (H;(£)). It is now easy to show,
abstracting the arguments in ([4],[5]), that the following is true:
THEOREM 4.4. C satisfies the condition: To each m € II, (L) there exists a ¥ € J(L) such that
m < (L) if and only if the topological space (J (L), TH; (L)) is Lindelsf.
SPECIAL CASES.
(1) Let L be disjunctive and suppose J(C)=Ig{(L),7H;(L)=TW,(L). Then
(I (L), TW, (L)) is Lindelof if and only if for any = € II, (L) there exists v € I (L) such that
T < (L)
(2) Suppose J(L) = I,(C), TH; (L) = 7V,(L). Then (I,(L), TV, (L)) is Lindelof if and only if
for any € IL,(L) there exists v € I,(L) such that 7 < v(L).
ACKNOWLEDGMENT. The author wishes to express his appreciation to the referees for their many
helpful comments in the revision of this paper.
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