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ABSTRACT. It is shown that, for a large class of non-archimedean normed spaces E, a subset
X is weakly compact as soon as f(X) is compact for all f € E’ (Theorem 2.1), a fact that has
no analogue in Functional Analysis over the real or complex numbers. As a Corollary we derive
a non-archimedean version of the Eberlein-Smulian Theorem (2.2 and 2.3, for the ’classical’
theorem, see (1], VIII, §2 Theorem 1 and Corollary, page 219).
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INTRODUCTION

Let E be a two-dimensional normed space over R or C and let X := {z € E: 0 < ||z| < 1}.
Each f € E’ has zeros on X, so f(X) = f({0} U X) is compact, while obviously X is not.
The same story can be told when we replace R or C by a complete non-trivially valued non-
archimedean field K that is locally compact. However, if K is not locally compact then, under
reasonable conditions, for a subset X of a normed space E over K compactness of f(X) for all
f € E’ implies weak compactness of X (we point out that if such an X has more than one point
it cannot be convex). To prove this curious fact (in §2) we shall develop some machinery in §1.
PRELIMINARIES

Throughout K is a non-trivially non-archimedean valued field which is complete with respect
to the metric induced by the valuation | |, and E is a normed K -vector space, where we assume
Il | to satisfy the strong triangle inequality ||z + y|| < max(||z|],]ly]|). We write |K*| := {|A] :
M€K X#0}, Bg(0,r):={z € E:|z|| <r}, Bg:= Bg(0,1).

E' is the space of all linear continuous functions £ — K. Equipped with the norm f —
sup{|f(z)|: z € Bg} it is a Banach space (i.e. a complete normed space). E is called normpolar
if the norm is polar i.e. if ||z|| = sup{|f(z)| : f € E',|f| £ || ||} (= € E), in other words, if
7: E — E" is an isometry. E’ is always normpolar. We assume throughout this note that F is
normpolar.

A subset A of a (normed) space E is absolutely convez if it is a module over Bg. A set
X C E is convez if it is either empty or an additive coset of an absolutely convex set. A
subset A of E is called edged if it is absolutely convex and, in case the valuation of K is dense,
A =N{ M : X € K,|X\| > 1}. The weak topology w = o(E, E') is the weakest topology on E
making all f € E’ continuous. The weak-star topology w’ = o(E’, E) is the weakest topology
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on E’ making all evaluation maps f — f(a) (a € E) continuous. For X C E’ we denote its
w’-closure by TUI.

For other notions used in this paper we refer to [4].

1. SEPARATION OF vw'-PRECOMPACT SETS

LEMMA 1.1. Let X be a bounded subset of E'. Then {z € E : }161£ |f(z)] > 0} s open wn
E.

Proof. X is equicontinuous, so for each n € N the set U, := {z € E : |f(z)| > L forall f €
X} is open. Then sois YU, ={z € E: }g)f( |f(z)] > 0}.

LEMMA 1.2, Let Ig be not locally compact. Let X C E’ and a € E be such that X (a) :=
{f(a) : f € X} is precompact. Suppose X C g + U where U s an edged zero neighbourhood
i E', U w'-closed and where g € E'\ U. Then for any e > 0 there exists a b € E for which
lla =8|l <e andinf{|f(®)]: fe X} >0.

Proof. There exists an r € |K*| such that Bg/(0,7) C U. Choose § € K,0 < |§| < 1.
The equivalence relation ~ on K * given by ’a ~ 8 iff |« — 8| < |B|’ yields an open partition
of C := {A € K : |8|re < |A| < re} that is infinite because K is not locally compact. By

precompactness X (a) cannot meet each equivalence class and there exists a 4y € C such that

() [f(a) =~vI= v (f €X).

U is w'-closed and edged, g & U, so by [6], 4.8 there exists a ¢ € E such that g(c) = v, |f(c)] < |7]
for all f € U. Set b := a —c. We have |[f(c)| < |y| for all f € Bg/(0,7) so |la —b| =
flell = lla(e)ll € |ylr~! < e. For each f € X, writing f = g + u where u € U, we obtain
[f(c) =] = [f(c) = g(c)| = [u(c)| < |y|- This, combined with (x), yields |f(a) — ] > |f(c) — 7|
for all f € X,so |f(b)| =|f(a) — f(c)| = max(|f(a) —~|,|f(c)=~]) = |f(a) — 7| = |7]. It follows
that }Q,fv |f(b)] > 0.

COROLLARY 1.3. Let K be not locally compact, let E be a Banach space. Let X C E’ be
w’-precompact. Suppose X C g+ U where U is an edged zero neighbourhood 1n E’, U w’-closed,
g€ E'\U. Then {z € E : }Ig({f(zﬂ > 0} is open and dense in E.

Proof. Just combine Lemmas 1.1 (w’-precompactness implies w’-boundedness hence norm
boundedness by completeness) and 1.2.

DEFINITION 1.4. Let us call X C E’ o-decomposable in E' if for each ¢ € E’ \ X
there exist fi, f2,... € X and edged zero neighbourhoods U,,U,, ... in E’ such that each U,, is
w'-closed and X C |J(fn + Un), 9 € U(fn + U,).

THEOREM 1.5. (SEPARATION THEOREM) Let K be not locally compact, let E
be a Banach space, let X C E’ be w’-precompact and o-decomposable in E’. Then for each
g € E'\ X there ezists an a € E such that g(a) # f(a) for all f € X.

Proof. Without loss, assume g = 0. Let {f, + U, : n € N} be a covering of X like in
Definition 1.4. By Corollary 1.3 for each n € N the set {z € E : fier}a |f(z)|] > 0} is open and
dense in E, where X, := X N (f, + U,). By completeness and the Baire Category Theorem
{z€E:f(z)#0foral feX}D(({z€E: !ienxfnlf(a:)l > 0} # 2.

REMARK. It is not hard, by nmodifying 1.1 - 1.5, to prove the following dual form of
this separation theorem. Let K be not locally compact, let X C E be weakly precompact and
o-decomposable in E (see below). Then for each a € E \ X there emists an f € E’ such
that f(a) ¢ f(X). Here, X is called o-decomposable in E if for each a € E \ X there exist
T1,Z9,... € X and edged zero neighbourhoods U,,U;,... in E such that each U, is weakly
closed and X C J(zn + Us), a & U(zn + Ua).
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COROLLARY 1.6. Let K be not locally compact, let E be a Banach space, let X C E' be
o-decomposable 1n E'. Suppose X (a) := {f(a): f € X} s compact for alla € E. Then X 1s
w’-compact.

Proof. The map f (f(a))aeE

The image of X lies in the compact subset [] X(a) so X is w’-precompact. Since E’ is w'-
a€E
quasicomplete by the p-adic Alaoglu Theorem (8], 3.1, it suffices to show that X is w’-closed.

To this end let g € E’'\ X. By Theorem 1.5 there exists an a€ E such that g(a) ¢ X (a). Now
X(a) € X*(a) C X(a) = X (), 50 g(a) € X" (a) ie. g ¢ X"
To find examples of o-decomposable sets (in 1.9-1.11) we need the following Lemmas.
LEMMA 1.7. Letn € N, let D be an n-dimenswonal subspace of E'. Then for each t € (0,1)
there exist a1, ay, ... ,a, € Bg such that E&)&U(a.)l >t (f e D).

is a homeomorphism of (E’,w’) onto a subspace of K E.

Proof. First assume that the valuation of K is dense. The space H := {z € E : f(z) =
0 for all f € D} has codimension n in E. Choose s € (t,1) and let g;,... , g, be a y/s-orthogonal
base of (E/H)’' such that s™! < |lg,|| < ¢t7? for i € {1,...,n}. There exist b,,...,b, € E/H
such that g,(b,) = 6,, (i,5 € {1,...,n}). Let 2 € {1,... ,n}, let ¢ = XX, g, € (E/H)". Then

loll 2 Vsmax|A;| llg; |l and Jg(b)] = [A] so Jg(b)] < max || < smax |2 | flg |l < Vsllgll-
So ||b.]] < 1. Thus, with 7 : E — E/H denoting the canonical quotient map, there exist
ay,...,a, € Bg with n(a,) = b, for each i. The adjoint #’ of # maps (E/H)' isometrically
onto D Now let f € D. Then f = 7'(g) where g € (E/H)', |lgll = ||f]- We have, writing

9= 2 A;9;, max |f(a,)| = max|g(b,)] = max [\] 2 tmax |Afllg.[l 2 tZXg.]l = tlgll = tll £l
7=1
Now, if the valuation is discrete we can modify the above proof by taking s = ¢t = 1. Then

the b, have norm < 1 (rather than < 1), but one can use that E/H is a strict quotient i.e. there
exist aj,...,a, € E with ||a,|| = ||b.|| and 7 (a,) = b, for each 1.

LEMMA 1.8. Let D be a subspace of E', D of countable type. Then there i1s a sequence
ay,ay, ... € Bg such that ||f|| = sup|f(an,)| for all f € D.

Proof. Let D, C D, C ... be finite-dimensional subspaces of D, |JD,, is dense in D. Let
t € (0,1). By Lemma 1.7 there exists a finite set F! C Bg such that max |f(z)]| > ¢t||f]] for all
z€FL

f € Dy

So, for F*:= |J F} we obtain
neN

(*) 11112 sup If (@) 2 ¢l (felJDn

Now F:= |J F'is countable and () implies ||f|| = sup |f(z)] for all f € |JD., hence, by
teQn(o,1) n
continuity, for all f € D.

PROPOSITION 1.9. Let X C E' be such that X (a) := {f(a) : f € X} is separable for
each a € E and [X] 15 of countable type. Then X 15 o-decomposable in E'.
Proof. Let g € E'\ X. Then D := [{g} U X] is of countable type so by Lemma 1.8 there

exist a;, a,,... € Bg such that
(%) llrll = sup |h(an)] (h € D).
ne

For each m,n € N the set U, := {h € E' : |h(an)| < %} is an edged w'-zero neighbourhood.
Its cosets, except for g + Upmn, cover X \ (g + Unn,) and by separability of X (a,) there exists
a countable subcovering F,,, no member of which contains g. Then U F,., still avoids g; it

remains to be shown that it covers X. Suppose f € X is not covered. Then f € g+ U, for all
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m,n so |f(as) —g(an)| = 0 for all n. Now f —g € D, so by (*) we obtain ||f —g|]| = 0 ie. f =g,
a contradiction since g € X.

COROLLARY 1.10. Let X C E'. If X 1s norm precompact, or X 1s w'-precompact and
[X] s of countable type, then X 1s o-decomposable 1n E’.

PROPOSITION 1.11. Let X C E’ be such that X (a) s separable for each a € E. Suppose
that for each h € X" the set X U {h} 1s w’-metrizable. Then X s o-decomposable mn E'.

Proof. Let g€ E'\ X. If g & F"l then there exists a w’-zero neighbourhood U such that
(9 +U)N X = @. We may assume that U is of the form {f € E': |f(a;)| <e,...,|f(an)] < €}
for some e > 0, n € N, ay,... ,a, € E. ‘Then U is w'-closed and edged. By separability of
X(a)) X ... x X(a,) only countably many of the cosets f + U : f € X cover X and none of
them contains g. Now let g € Ywd By w’-metrizability there exist w’-neighbourhoods of zero
U, DUz D ... such that X N[(g + U,) = @. We may suppose that the U, are w’-closed

and edged. By separability, like a':bove, for each n the set X \ (¢ + U,,) is covered by countably
many additive cosets of U,, none of them containing g. Their union is a countable covering of
X avoiding g.
2. EBERLEIN-SMULIAN THEORY
We now apply the theory of §1. Recall ([5], p. 57) that E is said to have property () if for each
subspace D of countable type, every f € D’ has an extension f € E’. By the non-archimedean
Hahn-Banach Theorem [4], 4.8 every normed space over a spherically complete K has (). For
general K, spaces with a base, in particular spaces of countable type, have (x) ([5], p. 58), and
so have strongly polar spaces ([6], 4.2). Recall that E is assumed to be normpolar.
THEOREM 2.1. Let K be not locally compact, let X be a subset of E such that f(X)
15 compact for all f € E'. Then each one of the following properties implies that X s weakly
compact and weakly metrizable.
(i) E has property (x).
(ii) E’ 1s of countable type.
(iii) [X] w8 of countable type.

Moreover, in case (i) X s norm compact and the weak and norm topology cowncide on X.

Proof. The natural isometry j : E — E” is easily seen to be a homeomorphism of E with
the weak topology onto j(F) with the restriction of the w’-topology o(E”, E'). We show that
j(X) is o-decomposable in E”. First note that the predual E’ is normpolar. In case (i), from
weak precompactness of X it follows that X is norm precompact by [7], Th. 3 (the assumption
made throughout (7] that E is complete is easily seen to be superfluous here). So j(X) is norm
precompact in E” and therefore o-decomposable by Corollary 1.10. For case (ii) observe that
every (w’'—) bounded subset of E” is w’-metrizable ([8], 6.1) which applies to ;(X) U {6} for
any § € E”. For each f € E’ the set j(X)(f) = f(X) is compact hence separable so j(X) is
o-decomposable in E” by Proposition 1.11. For case (iii) we can directly apply Corollary 1.10.
Thus, (X ) is o-decomposable, and from Corollary 1.6 we conclude that 7(X) is w’-compact, so
X =371 (](X)) is w-compact. Observe that X is w-bounded hence bounded by normpolarity
(6], 7.7).

We have seen in passing that 7(X ) is w'-metrizable in case (ii), so X is weakly metrizable. Now
let X satisfy (iii). Then [j(X)] is of countable type so by Lemma 1.8 there exist f;, f2,... € By
such that ||y(z)|| = sug|fn(z)| for all z € X. The formula d(z,y) = sup|fn(z) — fu(y)|27"

neE. n

defines an ultrametric d on X (if d(z,y) = 0 then |f,.(z) — f.(y)| = 0 for all n so ||z — y|| = 0).
By boundedness of X the induced topology is weaker than the weak topology on X, but by
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weak compactness these topologies coincide and so X is weakly metrizable. Finally, in case (i)
apply [6], 5.12 to conclude that on X the weak and norm topology coincide, and that therefore
X is norm compact and w-metrizable.

REMARKS.

1. If K is not spherically complete the space £ does not have property (x) ([4], 4.15 (§) = (7))
but since (£°)" ~ cq ([4], 4.17) it satisfies (ii) of the above Theorem, and so do the non-reflexive
space £2@¢% ([3], 2.3) and the space D of 4], 4.J.

2. Let K be not sphex‘icaliy complete, let E := £, let X := {0} U {e;},e,...} C £, when
€1,€2,... are the unit vectors. Then (ii) and (iii) above hold. X is weakly compact (since

lim e, = 0 weakly) but is obviously not norm compact.

3. The following example indicates that extending Theorem 2.1 to, say, metrizable locally convex
spaces is doubtful. Let E := KN with the product topology. Then E’ = PK. Let X :=
N

{e1,€2,...} where €),¢,,... are the unit vectors of KN. Then E is of countable type so (i),

(i1), (iii) of Theorem 2.1 are (formally) satisfied. For each f € E’ we have f(e,) = 0 for

large n, so f(X) is finite (hence compact) and contains 0. Yet, X is not (weakly) compact

as0=w— lime, € X.

The followi;;; : now an almost trivial consequence of Theorem 2.1.

COROLLARY 2.2. (p-adic Eberlein-Smulian Theorem I) Let K be not locally compact
and let X, E satisfy one of the conditions (i), (ii), (iii) of Theorem 2.1. Then the following are

equivalent.

(o) X s weakly compact.
(B) X 1s weakly sequentially compact.
(v) X s weakly countably compact.

Proof. Each one of the properties (o), (8), (y) implies compactness of f(X) for all f € E’.
By Theorem 2.1 X is weakly metrizable and from that the equivalence of (a), (8), () follows
easily.

NOTE. In Corollary 2.2, (a), (8), (v) are obviously equivalent to: ‘for all f € E’ the image
f(X) is compact.’

We have seen in the Introduction that Theorem 2.1 fails if K is locally compact. We now
investigate what happens to Corollary 2.2. Note that every normed space over K has (*).

THEOREM 2.3. (p-adic Eberlein-Smulian Theorem 1) Let K be locally compact, let X C
E. Then each one of the above statements (a), (8), (7) s equivalent to ’X s norm compact’.

Proof. We have (a) = (v), (8) = (7). It suffices to prove that (y) implies that X is a norm
compactoid (then X is weakly metrizable since the norm and weak topology coincide on X ([6],
5.12)). Suppose not. Then by (7], Th. 2 thereis a t € (0, 1] and a t-orthogonal sequence e;, e,, . ..
in X such that ir71lf |leall > 0. By () there is a weak accumulation point a of {e;,es,...}. This

(=]
a is in the weak closure D of [e}, e, ...] which equals the norm closure, so a = Y X,e, where

[IXe.ll = 0. If X, # 0 for some j, let U := {z € E : |6,(z)| < |A,|} where §, € E’ is‘_a]n extension
of the jth coordinate function X.e, — &, on D. Then a + U is a weak neighbourhood of a but
for each n € N, n # j we have |6,(a — e,)| = |),| so e, & a + U, a contradiction. Hence, a = 0.
But then {z € E : |f(z)| < 1} is a weak neighbourhood of a containing no e, if f € E’ is such
that f(e,) = 1 for all n. Contradiction, so X is a norm compactoid.

REMARK. Corollary 2.2 for strongly polar spaces E and Theorem 2.3 were first proved
directly by the first author.
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REMARK. The following 'relative’ version of the Eberlein-Smulian Theorem holds. (Com-
pare [1], VIII §2, Theorem 1). Let X C E. Suppose one of the conditrons (i), (i), (iii) of
Theorem 2.1 s satisfied. Then the following are equivalent. (o) X 15 weakly relatwely compact.
(8) X s weakly relatwely sequentially compact. (y) X 1s weakly relatively countably compact.
We leave the easy proof to the reader.

COUNTEREXAMPLES. We show that the previous theory fails for certain subsets X of
£(I) where I has at least the cardinality of the continuum, but is non-measurable, and where
K is not spherically complete. The K -valued characteristic function of a subset S C I is denoted
£s and is given by £g(z) :=1ifz € S, €5(z):=0ifz € T\ S.

1. Let X := {5 : S C I}. Then X 1s a weakly compact but not weakly sequentially compact
subset of £°(I).

Proof. X is bounded and since ¢=(I)" =~ co(I) ([4],4.21) the weak topology on X is the

topology of pointwise convergence. Clearly the map f — (f(z)) is a homeomorphism X —

{0,1}7, hence X is weakly compact. To prove that X is not weakl)flsequentially compact, let ¢ :

I =Y be a surjection where Y := {£4: A C N} C £=. The formula ¢(z) = (¢s,(z), €s,(2), ... )

(z € I) defines subsets S;,Ss,... of I. If €5n,1€5,,: - Is a subsequence of €s,,&s,,.-- then,

by surjectivity of ¢, there is an z € I for which (fsn, (x),ﬁsn2 (z),...)=1(1,0,1,0,1,...), so the

subsequence is not weakly convergent.

2. Let Z := {€s: S C I, S countable} C £>°(I). Then Z 1s weakly sequentially compact but not
weakly compact.

Proof. Clearly the weak closure of Z equals X of above, so Z is not weakly compact. On
the other hand, if £s,,€s,,... is a sequence in Z then S := US,, is countable and by a standard
diagonal procedure one obtains a subsequence converging at all points of S, hence at all points
of I, to an element of Z.

3. LetT := {épy:i €I} C£>(I). Then f(T) 1s compact for all f € £°(I)" but T s not weakly
countably compact.

Proof. Let f € £2°(I)". As £°(I)' ~ co(I) we have that f(£(,;) = 0 except for i € {,,iz,...}
where we may assume the 1, € I to be distinct. Then £(,,3 — 0 weakly so T, := {0} U {&..y :
n € N} is weakly compact and f(T') = f(T:) is compact. However the only weak accumulation

point of {£(.,},€(5},---} is 0 € T so that T is not weakly countably compact.
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