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ABSTRACT. In the present note, we define operator spaces with n-hyper-reflexive property, and

prove n-hyper-reflexivity of some operator spaces
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1. INTRODUCTION
Let H be a Hilbert space, and B(H) be the algebra of all bounded linear operators on H It is well

known that B(H) is the dual space of the Banach space of trace class operators If T E B(H),
R c B(H), and n is a positive integer, then H(n) denotes the direct sum ofn copies ofH, T(n) denotes

the direct sum of n copies of T acting on H(’) and R(’) .[T(’)IT R} Let P(H) be the set of all

orthogonal projections in B(H) For any subspace R c B(H), we will denote by l(R) the collection of

all maximal elements of the set

{(Q,P)I(Q,P) P(H) P(H), QRT 0}

with respect to the natural order It can be seen that if R is a unital subalgebra of B(H), then

l(R) {1- P,P)IP fat R}

where lat R is lattice of all invariant subspace of R Recall that an algebra R c B(H) is transitive if

lat R{0, 1), and reflexive if the only operators that leave invariant all of the invariant subspaces ofR are

the operators belonging to R Generalizing this notion, we say that an operator space R C B(H) is

transitive if I(R) {(0, 1), (1, 0)} (this is equivalent to Rx H for any x E H {0}), and is reflexive

if

R {T B(H)[QTP 0 for every (,P) I(R)).

In other words, R is reflexive if the seminorms d(T, R) and sup(llTP[I (, P) P(R)} vanish on R
simultaneously, where d(T, R) is the distance from T to R It can be seen that

d(T,R) >_ sup(IIQTPII (Q,P) /(R)}

for any T B(H).
Reflexive operator space R C B(H) is called hyper-reflexive if there exists some constant C _> 1

such that

d(T,R) <_ Csup{l]QTPll I(Q,P) /(R)}

for any T E B(H), (see [1-5]).
In [4], an example ofnon hyper-reflexive operator algebras is constructed
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In the present note, we define operator spaces with n-hyper-reflexive property, and prove n-hyper-
reflexivity of some operator spaces

The operator space R c B(H) is called n-reflexive if R(’) is reflexive It can be shown that

d(T,R) > sup{IlQT(’)PI[ (Q,P) e/(R(’))}

for any T E B(H) and n E N
We say that the n-reflexive operator space R C B(H) is n-hyper-reflexive if there exists some

constant C > 1 such that

d(T,R) <_ Csup{IIQT(’)PI] (Q,P) e/(R(’))}
for any T B(H)

It is easily seen that if R is n-reflexive (n-hyper-reflexive) then it is k-reflexive (k-hyper-reflexive)
for every k > n

2. MAIN RESULT

Let us consider in B(H) the following operator equation

A,XB, X (2 l)

,The space of all solutions of the equation (2 l) will be denoted by R
PROPOSITION 1. R is (n + 1)-reflexive
PROOF. For given any x, y 6 H {0}, put

z (Blx,...,B,z,z) H(’+) and y (A*y,...,Ay, y) H(’’+)

Let P and Qy be the one-dimensional projections on one-dimensional subspaces {Cx} and {Cu}
respectively From (2.1), we have (Qu, P,) c= l(R(r’+)) On the other hand, it is easy to see that any
T B(H) is a solution of equation (2.1) if and only ifQuT(’+I)P, 0 This completes the proof

We will assume that, in case n > 1, the coefficients of equation (2 l) satisfy the following conditions

[[At[[_<l, lIB,[[_<l, A,A.=B,B=O (l<i<j_<n). (2 2)

The purpose ofthis note is to prove the following.
THEOREM 2. The space R of all solutions of (2.1) and (2 2) is (n + 1)-hyper-reflexive.
To prove Theorem 2 we need some preliminary results.

Let Y be a Banach space with Y* X and S be a weak* continuous linear operator on X with

uniformly bounded degree, [[S"[[ _< C(n N) Denote by E the space of all fixed points of S,
E {x X[Sx x} Ifx0 E, then for any x E X we have

[[S’x x[[ [[S’(x x0)- (x- x0)[[ < (C + X)[[x x0[[
and consequently

1
supllS":r- zlld(z,E) > C + I n

PROPOSITION 3. Under the above assumptions,

d(z, E) <_ sup IIS"
for any x X

PROOF. Since E is a weak* closed subspace of X, there exists a subspace M c Y such that
M+/-= E, where M+/- is the annihilator of M It can be seen that the set {Ty- YlY Y} weak*
generates M, where T is the preadjoint of S, that is, T* S. Let x X and let K(x) be the weak"
closure of the convex hull of the set {S’xln N} By Alaolu’s theorem, K(x) is weak* compact We
will show that K(x)fqE (R)for any x E X Suppose that K(x)fqE Q. By Hahn-Banach

separating theorem, there exists y0 6 M such that
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inf [(a, yo)l a > 0
a K(z)

where (,) is the duality between X and Y

Put

1 -Skx
2

k_

Then x, E K(x) and IIzll cI zl Now, we will prove that

lim I(x, Y0)l 0 (23)

Since (x,) is a bounded set, it is sufficient to prove the equality (2 3) in case y0 Ty y, (y E Y)
In that case

1 (S+x Sx, y) 0

Now, suppose that [[S’:r xl[ < 5 for some & > 0 and any n E N It is easy to see that [[a zl[
for any a K(x) Let ao K(x) AE Then I1 zll _< and consequently d(x,E) < ,5

PROOF. OF THEOREM 2. For any A B(H) we denote by LA and RA the left and right

multiplication operators LA X AX, RA X XA on B(H) respectively Then we may write

equation (2 1) as

Thus, the solution space R of (2 1) coincide with the set of all fixed points of the operator

S LA, RB,.
_-_-|

It is easily seen that S is a weak* continuous linear operator on B(H) Moreover, under assumption

(2 2), it can be shown (by induction) that

Sk LARo.
=1

and consequently IISK n

By Proposition 3, for any T B(H) we have

For Ilzll _< 1 and tlull _< 1, let xk (Bz,...,Bkz,z),yk (Aky,...,Aky,- y) It can be seen that

(R(n+l)xk,Yk) 0 and Ilxkll _< , / 1, Ilykll _< n / 1 (k N).

Therefore

d(T,R) < (n + l)sup{l(T(r’+l)x,Y)[ (R(’-)x,y) =O,l[x[l llY[[ 1}.
Let P=, Qy be the one-dimensional projections (as in the proof of Proposition 1) Then we obtain
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d(T,R) <_ (n + I)sup{llQT(n-I)Pz[[ QR(n/I)pz o}
<__ (n + I)suP{llQT(’ I)Pll (Q,P) E I(R(’+I))}

This completes the proof
COROLLARY 4. Let A, 13 B(H) with IIAI] _< 1, 111311 < 1 Then, the solution space R of the

equation

AXB X

is 2-hyper-reflexive with constant C 2

Generally speaking, the solution space of equation (2 4) may be reflexive

Q, P E P(H), then the solution space of equation

(24)

For example, if

QXP X (2 5)

is reflexive Hyper-reflexivity (with constant C 1) of the solution space of equation (2 5) was proved
in [3]

Note that the space of all Toeplitz operators r coincide with the solution space of (2 4) in case

A U" and B U, where U is a unilateral shift operator on Hardy space H [6]
Consequently, r is a 2-reflexive by Proposition Using Theorem 2, we can deduce even more

COROLLARY 5. The space of all Toeplitz operators r is 2-hyper-reflexive, with constant C’ 2

In other words

for any T B H
On the other hand we have the following

PROPOSITION 6. The space of all Toeplitz operators r is transitive (consequently - is not

reflexive)
PROOF. Suppose that "r is nontransitive Then there exists f, 9 H2 {0} such that (Tf, 9) 0

for every T - If we put in last equality T U and T U (n 0, 1, 2, ...), then we obtain that

the Fourier coefficients of the function f are zero Since f 0 a e, one of these functions vanishes

a e on some subset of the unit ":iccle with positive Lebesque measure By F and M Riesz uniqueness

theorem [6], one of these functions is zero

Hyper-reflexivity of algebras of analytic Yoeplit operators was proved in [5]
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