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1. INTRODUCTION

Let H be a Hilbert space, and B(H) be the algebra of all bounded linear operators on H It is well
known that B(H) is the dual space of the Banach space of trace class operators If T € B(H),
R C B(H), and n is a positive integer, then H(™ denotes the direct sum of n copies of H, T(™ denotes
the direct sum of n copies of T acting on H™ and R™ = {T™|T € R} Let P(H) be the set of all
orthogonal projections in B(H) For any subspace R C B(H), we will denote by I(R) the collection of
all maximal elements of the set

{(Q, P)I(Q, P) € P(H) x P(H),QRT = 0}

with respect to the natural order It can be seen that if R is a unital subalgebra of B(H ), then
I[(R)={1- P,P)|P € lat R}

where lat R is lattice of all invariant subspace of R Recall that an algebra R C B(H) is transitive if
lat R{0,1}, and reflexive if the only operators that leave invariant all of the invariant subspaces of R are
the operators belonging to R  Generalizing this notion, we say that an operator space R C B(H) is
transitive if I(R) = {(0,1), (1,0)} (this is equivalent to Rz = H for any z € H — {0}), and is reflexive
if

R ={T € B(H)|QTP =0 forevery (Q,P) €l(R)}.

In other words, R is reflexive if the seminorms d(T', R) and sup{||QTP|| | (Q, P) € P(R)} vanish on R
simultaneously, where d(T', R) is the distance from T to R It can be seen that

d(T, R) > sup{|IQTP| | (Q, P) € ((R)}

forany T € B(H).
Reflexive operator space R C B(H) is called hyper-reflexive if there exists some constant C > 1
such that

d(T, R) < Csup{||QTP| |(Q, P) € (R)}

for any T € B(H), (see [1-5]).
In [4], an example of non hyper-reflexive operator algebras is constructed
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In the present note, we define operator spaces with n-hyper-reflexive property, and prove n-hyper-
reflexivity of some operator spaces
The operator space R C B(H) is called n-reflexive if R(" is reflexive 1t can be shown that

d(T, R) 2 sup{||QT™P||| (Q, P) € L(R™)}

foranyT € B(H)andn € N
We say that the n-reflexive operator space R C B(H) is n-hyper-reflexive if there exists some
constant C' > 1 such that

d(T,R) < Csup{[|[QT™P| | (@, P) € (R™)}

forany T € B(H)
It is easily seen that if R is n-reflexive (n-hyper-reflexive) then it is k-reflexive (k-hyper-reflexive)
forevery k > n
2. MAIN RESULT
Let us consider in B(H) the following operator equation
> AXB =X. @n
=1
The space of all solutions of the equation (2 1) will be denoted by R
PROPOSITION 1. R is (n + 1)-reflexive
PROOF. For given any z, y € H — {0}, put

z = (Bz,...,B,z,z) € H™Y and y=(4}y,.., ALy, —y) € H™D,

Let P; and Q, be the one-dimensional projections on one-dimensional subspaces {C;} and {C,}
respectively From (2.1), we have (Qy, P;) € [(R("*") On the other hand, it is easy to see that any
T € B(H) is a solution of equation (2.1) if and only if Q, 7>V P, = 0 This completes the proof.

We will assume that, in case n > 1, the coefficients of equation (2 1) satisfy the following conditions

lAll <1, Bl <1, AA=BB,=0 (1<i<j<n). 22

The purpose of this note is to prove the following.

THEOREM 2. The space R of all solutions of (2.1) and (2 2) is (n + 1)-hyper-reflexive.

To prove Theorem 2 we need some preliminary results.

Let Y be a Banach space with Y* = X and S be a weak” continuous linear operator on X with
uniformly bounded degree, ||S™|| < C(n € N) Denote by E the space of all fixed points of S,
E ={z € X|Sx =z} Ifzy € E, then for any z € X we have

8"z — z|| = [|$™(z — 20) = (z — zo)ll < (C + 1)l|z — Zoll
and consequently

d(z,FE) >

oy swplls™z — z

PROPOSITION 3. Under the above assumptions,

d(z,F) < sup||S"z — z||
foranyz € X "

PROOF. Since E is a weak” closed subspace of X, there exists a subspace M C Y such that
MY+ = E, where M is the annihilator of M It can be seen that the set {Ty — yly € Y} weak”
generates M, where T is the preadjoint of S, that is, T* = S. Let z € X and let K (z) be the weak®
closure of the convex hull of the set {S"z|n € N} By Alaoglu's theorem, K (z) is weak” compact We
will show that K(z) NE # @for any z € X Suppose that K(z) NE = @. By Hahn-Banach
separating theorem, there exists yo € M such that
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o B (e, y0)| =0 >0

where (, ) is the duality between X and Y’
Put

1 k
T, = - ZS T.
Then z, € K(z) and ||z,,|| < C||z|| Now, we will prove that
lim [(zn, yo)| = 0. (23)

Since (z,,) is a bounded set, it is sufficient to prove the equality (2 3) incase yo = Ty — y,(y € Y)
In that case

1
(@ Ty = y) = (SZp = 20, y) = —(§"" 'z = Sz,3) > 0.
Now, suppose that ||S"z — z|| < 6 for some § > 0 and anyn € N It is easy to see that ||a — z|| < §
foranya € K(z) Letag € K(z) NE Then|ay — z|| < 6 and consequently d(z,E) < 6
PROOF. OF THEOREM 2. For any A € B(H) we denote by L4 and R, the left and right

multiplication operators Ly : X - AX, R4 : X — XA on B(H) respectively Then we may write
equation (2 1) as

(Zn: LA,RB‘>X =X.

1=1

Thus, the solution space R of (2 1) coincide with the set of all fixed points of the operator
S=Y LaRp.
=1

It is easily seen that S is a weak™ continuous linear operator on B(H) Moreover, under assumption
(2 2), it can be shown (by induction) that

Sk = Z LAfRB:‘ .
=1

and consequently ||SX|| < n
By Proposition 3, for any T € B(H) we have

d(T,R) < sup |S*(T) - T| = sup

Y: AFTBX — T“
1=1

(TBfz, At*y) — (Tz,y)

1=1

= sup sup
Elzll <1,y <1

For ||zl < 1and ||ly|| < 1, let 7y = (B¥z, ..., Bz, ), yx = (A}*y,..., A%Fy, —y) It can be seen that

(R™Vzy,4) =0 and |oxl® <n+1, lisl® Sn+1(k e N).

Therefore
d(T,R) < (n+ 1)sup{|(T<"+”x,y)| ‘ (R Vz,y) =0, ||l = |lyll = 1} :

Let P, Q, be the one-dimensional projections (as in the proof of Proposition 1) Then we obtain
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d(T,R) < (n+ l)sup{ lQ, 7 VR, ’ Q,R™MVP, = o}
< o+ Dswp{ QT VP | @ P) e 1R |

This completes the proof
COROLLARY 4. Let A, B € B(H) with ||[A|| <1, ||B|| <1 Then, the solution space R of the
equation
AXB=X (24)

is 2-hyper-reflexive with constant C' = 2
Generally speaking, the solution space of equation (24) may be reflexive For example, if
Q, P € P(H), then the solution space of equation

QXP=X 25)

is reflexive Hyper-reflexivity (with constant C' = 1) of the solution space of equation (2 5) was proved
in [3]

Note that the space of all Toeplitz operators 7 coincide with the solution space of (2 4) in case
A =U" and B = U, where U is a unilateral shift operator on Hardy space H? [6]

Consequently, 7 is a 2-reflexive by Proposition 1 Using Theorem 2, we can deduce even more

COROLLARY 5. The space of all Toeplitz operators 7 is 2-hyper-reflexive, with constant C = 2
In other words

d(T,7) < 25up{[| QTP P | @, P) € 1)}

for any T € B(H?)

On the other hand we have the following

PROPOSITION 6. The space of all Toeplitz operators 7 is transitive (consequently 7 is not
reflexive)

PROOF. Suppose that 7 is nontransitive Then there exists f,g € H? — {0} such that (T'f,g) =0
for every T € 7 If we put in last equality T =U" and T = U*" (n =0, 1,2, ...), then we obtain that
the Fourier coefficients of the function fg are zero Since fg = 0 a e, one of these functions vanishes
ae on some subset of the unit <ircle with positive Lebesque measure By F and M Riesz uniqueness
theorem [6], one of these functions is zero

Hyper-reflexivity of algebras of analytic Toeplitz operators was proved in [5]
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