

RESEARCH NOTES
ON HYPER-REFLEXIVITY OF SOME OPERATOR SPACES

H. S. MUSTAFAYEV

Institute of Mathematics & Mechanics
Azerbaijan
Baku, RUSSIA

and

Ondokuz Mayıs Üniversitesi Lojmanları
Kurupelit Kampüsü, K-Blok, No 1
55139 Samsun, TURKEY

(Received May 4, 1994 and in revised form March 8, 1995)

ABSTRACT. In the present note, we define operator spaces with n -hyper-reflexive property, and prove n -hyper-reflexivity of some operator spaces

KEY WORDS AND PHRASES. Operator algebras on Hilbert spaces, reflexivity, hyper-reflexivity

1992 AMS SUBJECT CLASSIFICATION CODES. 47D25

1. INTRODUCTION

Let H be a Hilbert space, and $B(H)$ be the algebra of all bounded linear operators on H . It is well known that $B(H)$ is the dual space of the Banach space of trace class operators. If $T \in B(H)$, $R \subset B(H)$, and n is a positive integer, then $H^{(n)}$ denotes the direct sum of n copies of H , $T^{(n)}$ denotes the direct sum of n copies of T acting on $H^{(n)}$ and $R^{(n)} = \{T^{(n)} | T \in R\}$. Let $P(H)$ be the set of all orthogonal projections in $B(H)$. For any subspace $R \subset B(H)$, we will denote by $l(R)$ the collection of all maximal elements of the set

$$\{(Q, P) | (Q, P) \in P(H) \times P(H), QRT = 0\}$$

with respect to the natural order. It can be seen that if R is a unital subalgebra of $B(H)$, then

$$l(R) = \{1 - P, P | P \in \text{lat } R\}$$

where $\text{lat } R$ is lattice of all invariant subspace of R . Recall that an algebra $R \subset B(H)$ is transitive if $\text{lat } R \{0, 1\}$, and reflexive if the only operators that leave invariant all of the invariant subspaces of R are the operators belonging to R . Generalizing this notion, we say that an operator space $R \subset B(H)$ is transitive if $l(R) = \{(0, 1), (1, 0)\}$ (this is equivalent to $\overline{Rx} = H$ for any $x \in H - \{0\}$), and is reflexive if

$$R = \{T \in B(H) | QTP = 0 \text{ for every } (Q, P) \in l(R)\}.$$

In other words, R is reflexive if the seminorms $d(T, R)$ and $\sup\{\|QTP\| | (Q, P) \in P(R)\}$ vanish on R simultaneously, where $d(T, R)$ is the distance from T to R . It can be seen that

$$d(T, R) \geq \sup\{\|QTP\| | (Q, P) \in l(R)\}$$

for any $T \in B(H)$.

Reflexive operator space $R \subset B(H)$ is called hyper-reflexive if there exists some constant $C \geq 1$ such that

$$d(T, R) \leq C \sup\{\|QTP\| | (Q, P) \in l(R)\}$$

for any $T \in B(H)$, (see [1-5]).

In [4], an example of non hyper-reflexive operator algebras is constructed

In the present note, we define operator spaces with n -hyper-reflexive property, and prove n -hyper-reflexivity of some operator spaces

The operator space $R \subset B(H)$ is called n -reflexive if $R^{(n)}$ is reflexive. It can be shown that

$$d(T, R) \geq \sup\{\|QT^{(n)}P\| \mid (Q, P) \in l(R^{(n)})\}$$

for any $T \in B(H)$ and $n \in N$

We say that the n -reflexive operator space $R \subset B(H)$ is n -hyper-reflexive if there exists some constant $C \geq 1$ such that

$$d(T, R) \leq C \sup\{\|QT^{(n)}P\| \mid (Q, P) \in l(R^{(n)})\}$$

for any $T \in B(H)$

It is easily seen that if R is n -reflexive (n -hyper-reflexive) then it is k -reflexive (k -hyper-reflexive) for every $k > n$

2. MAIN RESULT

Let us consider in $B(H)$ the following operator equation

$$\sum_{i=1}^n A_i X B_i = X. \quad (2.1)$$

The space of all solutions of the equation (2.1) will be denoted by R

PROPOSITION 1. R is $(n+1)$ -reflexive

PROOF. For given any $x, y \in H - \{0\}$, put

$$x = (B_1 x, \dots, B_n x, x) \in H^{(n+1)} \quad \text{and} \quad y = (A_1^* y, \dots, A_n^* y, -y) \in H^{(n+1)}.$$

Let P_x and Q_y be the one-dimensional projections on one-dimensional subspaces $\{C_x\}$ and $\{C_y\}$ respectively. From (2.1), we have $(Q_y, P_x) \in l(R^{(n+1)})$. On the other hand, it is easy to see that any $T \in B(H)$ is a solution of equation (2.1) if and only if $Q_y T^{(n+1)} P_x = 0$. This completes the proof.

We will assume that, in case $n > 1$, the coefficients of equation (2.1) satisfy the following conditions

$$\|A_i\| \leq 1, \quad \|B_i\| \leq 1, \quad A_i A_j = B_i B_j = 0 \quad (1 \leq i < j \leq n). \quad (2.2)$$

The purpose of this note is to prove the following.

THEOREM 2. The space R of all solutions of (2.1) and (2.2) is $(n+1)$ -hyper-reflexive.

To prove Theorem 2 we need some preliminary results.

Let Y be a Banach space with $Y^* = X$ and S be a weak* continuous linear operator on X with uniformly bounded degree, $\|S^n\| \leq C (n \in N)$. Denote by E the space of all fixed points of S , $E = \{x \in X \mid Sx = x\}$. If $x_0 \in E$, then for any $x \in X$ we have

$$\|S^n x - x\| = \|S^n(x - x_0) - (x - x_0)\| \leq (C + 1)\|x - x_0\|$$

and consequently

$$d(x, E) \geq \frac{1}{C+1} \sup_n \|S^n x - x\|$$

PROPOSITION 3. Under the above assumptions,

$$d(x, E) \leq \sup_n \|S^n x - x\|$$

for any $x \in X$

PROOF. Since E is a weak* closed subspace of X , there exists a subspace $M \subset Y$ such that $M^\perp = E$, where M^\perp is the annihilator of M . It can be seen that the set $\{Ty - y \mid y \in Y\}$ weak* generates M , where T is the preadjoint of S , that is, $T^* = S$. Let $x \in X$ and let $K(x)$ be the weak* closure of the convex hull of the set $\{S^n x \mid n \in N\}$. By Alaoglu's theorem, $K(x)$ is weak* compact. We will show that $K(x) \cap E \neq \emptyset$ for any $x \in X$. Suppose that $K(x) \cap E = \emptyset$. By Hahn-Banach separating theorem, there exists $y_0 \in M$ such that

$$\inf_{a \in K(x)} |\langle a, y_o \rangle| = \sigma > 0$$

where $\langle \cdot, \cdot \rangle$ is the duality between X and Y

Put

$$x_n = \frac{1}{n} \sum_{k=1}^n S^k x.$$

Then $x_n \in K(x)$ and $\|x_n\| \leq C\|x\|$ Now, we will prove that

$$\lim_n |\langle x_n, y_0 \rangle| = 0. \quad (23)$$

Since (x_n) is a bounded set, it is sufficient to prove the equality (23) in case $y_0 = Ty - y$, $(y \in Y)$ In that case

$$\langle x_n, Ty - y \rangle = \langle Sx_n - x_n, y \rangle = \frac{1}{n} \langle S^{n+1}x - Sx, y \rangle \rightarrow 0.$$

Now, suppose that $\|S^n x - x\| \leq \delta$ for some $\delta > 0$ and any $n \in N$ It is easy to see that $\|a - x\| \leq \delta$ for any $a \in K(x)$ Let $a_0 \in K(x) \cap E$ Then $\|a_0 - x\| \leq \delta$ and consequently $d(x, E) \leq \delta$

PROOF. OF THEOREM 2. For any $A \in B(H)$ we denote by L_A and R_A the left and right multiplication operators $L_A : X \rightarrow AX, R_A : X \rightarrow XA$ on $B(H)$ respectively Then we may write equation (21) as

$$\left(\sum_{i=1}^n L_{A_i} R_{B_i} \right) X = X.$$

Thus, the solution space R of (21) coincide with the set of all fixed points of the operator

$$S = \sum_{i=1}^n L_{A_i} R_{B_i}.$$

It is easily seen that S is a weak* continuous linear operator on $B(H)$ Moreover, under assumption (22), it can be shown (by induction) that

$$S^k = \sum_{i=1}^n L_{A_i^k} R_{B_i^k}.$$

and consequently $\|S^K\| \leq n$

By Proposition 3, for any $T \in B(H)$ we have

$$\begin{aligned} d(T, R) &\leq \sup_k \|S^k(T) - T\| = \sup_k \left\| \sum_{i=1}^n A_i^k T B_i^k - T \right\| \\ &= \sup_k \sup_{\|x\| \leq 1, \|y\| \leq 1} \left| \sum_{i=1}^n (T B_i^k x, A_i^{*k} y) - (T x, y) \right|. \end{aligned}$$

For $\|x\| \leq 1$ and $\|y\| \leq 1$, let $x_k = (B_1^k x, \dots, B_n^k x, x), y_k = (A_1^{*k} y, \dots, A_n^{*k} y, -y)$ It can be seen that

$$(R^{(n+1)} x_k, y_k) = 0 \quad \text{and} \quad \|x_k\|^2 \leq n+1, \|y_k\|^2 \leq n+1 \quad (k \in N).$$

Therefore

$$d(T, R) \leq (n+1) \sup \left\{ |(T^{(n+1)} x, y)| \mid (R^{(n+1)} x, y) = 0, \|x\| = \|y\| = 1 \right\}.$$

Let P_x, Q_y be the one-dimensional projections (as in the proof of Proposition 1) Then we obtain

$$\begin{aligned}
d(T, R) &\leq (n+1) \sup \left\{ \|Q_y T^{(n+1)} P_x\| \mid Q_y R^{(n+1)} P_x = 0 \right\} \\
&\leq (n+1) \sup \left\{ \|Q T^{(n+1)} P\| \mid (Q, P) \in l(R^{(n+1)}) \right\}.
\end{aligned}$$

This completes the proof

COROLLARY 4. Let $A, B \in B(H)$ with $\|A\| \leq 1, \|B\| \leq 1$. Then, the solution space R of the equation

$$AXB = X \quad (24)$$

is 2-hyper-reflexive with constant $C = 2$

Generally speaking, the solution space of equation (24) may be reflexive. For example, if $Q, P \in P(H)$, then the solution space of equation

$$QXP = X \quad (25)$$

is reflexive. Hyper-reflexivity (with constant $C = 1$) of the solution space of equation (25) was proved in [3].

Note that the space of all Toeplitz operators τ coincide with the solution space of (24) in case $A = U^*$ and $B = U$, where U is a unilateral shift operator on Hardy space H^2 [6].

Consequently, τ is a 2-reflexive by Proposition 1. Using Theorem 2, we can deduce even more.

COROLLARY 5. The space of all Toeplitz operators τ is 2-hyper-reflexive, with constant $C = 2$. In other words

$$d(T, \tau) \leq 2 \sup \left\{ \|Q T^{(2)} P\| \mid (Q, P) \in l(\tau^{(2)}) \right\}$$

for any $T \in B(H^2)$.

On the other hand we have the following

PROPOSITION 6. The space of all Toeplitz operators τ is transitive (consequently τ is not reflexive).

PROOF. Suppose that τ is nontransitive. Then there exists $f, g \in H^2 - \{0\}$ such that $(Tf, g) = 0$ for every $T \in \tau$. If we put in last equality $T = U^n$ and $T = U^{*n}$ ($n = 0, 1, 2, \dots$), then we obtain that the Fourier coefficients of the function $f\bar{g}$ are zero. Since $f\bar{g} = 0$ a.e., one of these functions vanishes a.e. on some subset of the unit circle with positive Lebesgue measure. By F and M Riesz uniqueness theorem [6], one of these functions is zero.

Hyper-reflexivity of algebras of analytic Toeplitz operators was proved in [5].

REFERENCES

- [1] ARVESON, W., Interpolation problems in algebras, *J. Functional Analysis* **20** (1975), 208-233.
- [2] SHULMAN, V S, Vektor functionals, *Spectral Theory of Operators* **5** (1984), 192-225 (Russian)
- [3] PARROT, S, On a quotient norm and Sz Nagy-Foias lifting theorem, *J. Funct. Anal.* **30** (1978), 311-328
- [4] DAVIDSON, K R and POVER, S C., Failure of the distance formula, *J. London Math. Soc.* **32** (1985), 157-165
- [5] DAVIDSON, K R, The distance to the analytic Toeplitz operators, *Illinois J. Math.* **31** (1987), 265-273
- [6] DOUGLAS, R G, *Banach Algebra Techniques in Operator Theory*, New York, Academic Press (1972)
- [7] MUSTAFAYEV, H S and SHULMAN, V.S, On the denseness of vector functionals, *Soviet Math. Dokl.* **31** (1985), 167-170 (English translation)

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk