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ABSTRACT. Using a game-theoretic characterization of Baire spaces, conditions upon the domain and
the range are given to ensure a "fat" set C(f) of points of continuity in the sets of type X x {y},
y €Y for certain almost separately continuous functions f: X x Y — Z These results (especially
Theorem B) generalize Mibu's First Theorem, previous theorems of the author, answers one of his

problems as well as they are closely related to some other results of Debs [1] and Mibu [2]
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1. INTRODUCTION

Since the appearance of the celebrated result of I Namioka, many articles have been written on the
topic of separate and joint continuity, see Piotrowski [3], for a survey

Aside from an intensively studied Uniformization Problem — Namioka-type theorems, see
Piotrowski [3], questions pertaining to Existence Problem (see below) as well as its generalizations, have
been asked

Let X and Y be "nice" (e g Polish) topological spaces, let M be metric and let f : X xY — M be
separately continuous, that is, continuous with respect to each variable while the other is fixed Find the
set C(f) of points of (joint) continuity of f.

Let us recall that given spaces X, Y and Z, and let f : X x Y — Z be a function. For every fixed
z € X, the function f, : Y — Z defined by f.(y) = f(z,y), where y € Y, is called an z-section of f
A y-section f, of f is defined similarly.

One way to ensure the existence of "many" points of continuity in X x Y can be derived from the
following. Baire-Lebesgue-Kuratowski-Montgomery Theorem (see Piotrowski [3]) Let X and Y be
metric and let f : X x Y — R have all z-sections f, continuous and have all y-sections f, of Baire class
a Then fisofclassa + 1
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If a = 0, that 1s, f, is continuous, f is of class I Now, by a theorem of Baire, C(f) is residual So,
if we assume additionally that X x Y is Baire, then C(f) is a dense G subset of X x Y O

But one cannot relax the assumptions pertaining to the sections too much

EXAMPLE. Let I = [0,1] and let R be the set of reals Put D, = {(z,y): z = %, y = £, where
k and p are all odd numbers between 0 and 2"} Let D = UX D, 1t is easy to see that C! D = I?
Now, let us define f : I - Rby f(z,y) =1, for (z,y) € D and f(z,y) = 0if (z,y) ¢ D All the z-
sections f, and all the y-sections f, are of first class of Baireand C(f) = ¢ 0O

However, the following three important results hold

MIBU'S FIRST THEOREM (Mibu [2]) Let X be first countable, Y be Baire and such that
X x Y is Baire Given a metric space M If f : X x Y — M is separately continuous, then C(F) is a
dense G¢ subset of X x Y

MIBU'S SECOND THEOREM [2]. Let X be second countable, Y be Baire and such that X x Y’
is Baire Given a metric space M If f : X x Y — M has

a) all z-sections f; have their sets D(f) of points of discontinuity of the first category and,

b) all y-sections f, are continuous
Then C(f) is a dense, G subset of X x Y

+ Following Debs [1], a function f: X — M is called first class if for every € > 0, for every

nonempty subset A C X, there is a nonempty set U, open in A, such that diam (f(U)) < €.

DEBS' THEOREM [1] Let X be first countable Y be a special a-favorable space (thus Baire),
X x Y be Baire Given a metric space M If f : X xY — M has:

a) all z-sections f, of first class — in the sense of Debs and,

b) all y-sections f, continuous

Then C(f) is a dense G subset of X x Y’

2. QUASI-CONTINUITY ON PRODUCT SPACES

A function f : X — Y is called quasi-continuous at a point z € X if for each open sets A C X and
H C f(X), where z € A and f(z) € H, we have ANInt f~}(H)#® A function f: X - Y is
called guasi-continuous, if it is quasi-continuous at each point z of X.

A function f: X XY — Z (X,Y, Z - arbitrary topological spaces) is said to be quasi-continuous
at (p,q) € X x Y with respect to the variable y, if for every neighborhood N of f(p,q) and for every
neighborhood U x V of (p, g), there exists a neighborhood V' of ¢, with V' C V, and a nonempty open
U’ C U, such that for all (z,y) € U’ x V' we have f(z,y) € N. If f is quasi-continuous with respect

to the variable y at each point of its domain, it will be called quasi-continuous with respect to y The
definition of a function f that is quasi-continuous with respect to z is quite similar. If f is quasi-
continuous with respect to z and y, we say that f is symmetrically quasi-continuous.

One can easily show from the definitions that if f is symmetrically quasi-continuous, then f; and f,
are quasi-continuous for all z € X and y € Y. The converse does not hold.

LEMMA (Piotrowski [4] Theorem 4 2). Let X be a Baire space, Y be first countable and Z be
regular If f is a function on X x Y to Z such that all its z-sections f, are continuous and all its y-
sections f, are quasi-continuous, then f is quasi-continuous with respect to y

The converse does not hold
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As an immediate consequence we obtain (Piotrowski [4] Corollary 43) Let X and Y be first
countable, Baire spaces and Z be a regular one If f: X x Y — Y is separately continuous, then f is
symmetrically quasi-continuous

If X and Y are second countable Baire spaces and Z is a regular one, and a function
f: X xY — Z, then the following implications hold (which show the inclusion relations between
proper classes of functions) — see Diagram 1 None of these implications can, in general be replaced by

an equivalence, see Neubrunn [5]

f-continuous

g l S
f-symmetrically — fz, fy-continuous — f-quasi-continuous
quasi-continuous - l e

fz, fy-quasi-continuous

Diagram 1

The Banach-Mazur game. We will use here the classical Banach-Mazur game between players A
and B both playing with perfect information (see Noll [6], Oxtoby [7]) A strategy for player A is a
mapping o whose domain is the set of all decreasing sequences (G, ...,Gan—1), n > 1, of nonempty
open sets such that a(Gj, ..., Ga,—1) is a nonempty open set contained in Go,—;. Dually, a strategy for
player B is a mapping 3 whose domain is the set of all decreasing sequences (Uy, ..., Usa), 7 > 0, of
nonempty open sets such that 8(Uy, ..., Uz,,) is nonempty, open and contained in Uz, Here n = 0 stands
for the empty sequence, for which B(D) is nonempty and open, too. If a, (8 are strategies for A, B
respectively, then the unique sequence Gi,G2,Gs,... defined by B(0) = G1, a(Gy) =G,
B(G1,Gs) = Gs, a(G1,Gs,G3) = Gy, ... is called the game of A with a against B with 3 We will say
that A with o wins against B with 8 if N{G, : n € N} # 0 holds for the game Gy, G, ... of A with
against B with 8. Conversely, we will say that B with 3 wins against A with a if A with a does not win
against B with §.

We will make use of the following theorem, essentially proved by Banach and Mazur cf. Oxtoby [7],
see also Noll [6] where the game-theoretic characterization of Baire spaces was applied to obtain some
graph theorems.

Let E be a topological space. The following are equivalent:

(1) E is a Baire space;

(2) for every strategy 3 of B there exists a strategy a of A with o wins against B with 5.
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3. THE MAIN RESULT

Let us recall If A C X and U is a collection of subsets of X thenst.(A,U) = | J{U € U .
UNA#0} Forz e X, we write st.(z,l) instead of st.({z},U) A sequence {G,} of open covers of
X is a development of X if for each z € X the set {st.(z,G,): n € N} isabase at z A developable
space is a space which has a development A Moore space is a regular developable space

THEOREM A. Let X be a Baire space, Y be space and let { P, },” | be a development for Z If
f: X xY — Z is quasi-continuous with respect to y, then C(f) is a dense, Gy subset in X x {y}, for
alyeY

PROOF. Letx € X,y €Y andlet U x V be a neighborhood of (z,y) Define a strategy 5 for a
player B in a corresponding Banach-Mazur game played over X For this purpose we shall order (well-

ordering) the sets X, open neighborhoods of y and open nonempty subsets of X

(1) B(®) has to be defined Since Z has a countable development P,, there is a local countable base at

every point of Z, in particular take {G,.} at f(z,y) Pick G; Now by the quasi-continuity of
f with respect to y, there is a neighborhood V' of y, and a nonempty open U' such that
f(U'x V1) C Gy Let us further assume that U' and V! are the first sets in their orderings of X
and Y, respectively with the above property Now, let W! be the first nonempty open set contained
in U! and let z, be the first element of W! Thus, W! x V! is a neighborhood of (z;,y) So, let
B0) = W'

(2) B(Gh,Go2) has to be defined, where G;,G, are nonempty open and G2 C G; Now, f is quasi-

continuous with respect to y at (zg,y), pick G3, the first element of the base at f(z,y) with
G3 C Go  Now pick the first element U3 x V3 such that f(U® x V3) c G3 - such a U3 x V3
exists, by the quasi-continuity with respect to y of f Now, let W3 be the first open nonempty set
contained in U? (a priori, it can be even the same set (1)) and let z3 € U3 be the first element of W3,
Thus, W3 x V3 is a neighborhood of (z3,y) So, let 3(G1,Gq) = W3.

(3) In this way we proceed to define 3 by recursion, i e., if 3(8) = G, and B(G}, ..., Gox) = Gaox41, for
all k < n then the former steps are available and we can define Gy ; in analogy with (2).

(4) Suppose now that (3 has been defined. Since X is Baire, there is a strategy o for A such that A with
« wins against B with (3 (see the definition of the game).
Let Gy, Gs... be the game A with « against B with .
Notice that.

(YW.:neN}=[){Gn:neN}. @3.1)

But observe that o is winning, hence this intersection is nonempty; i.e, z* € (\{{W, : n € N}, so
(z*,y) € (U x V)U(X x {y}). This in turn shows the density of C(f) in X x {y} The Gs part

follows easily from the construction [0

A space will be called guasi-regular if for every nonempty open set U, there is a nonempty open set
V suchthat C1V C U Obviously, every regular space is quasi-regular.

Let .A be an open covering of a space X Then a subset S of X is said to be A-small if S is
contained in a member of A A space X is said to be strongly countably complete if there is a sequence
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{A; - 2=1,2,...} of open coverings of X such that a sequence {F,} of closed subsets of X has a
nonempty intersection provided that F, D F, ., for all 2 and each F; is A,-small

The class of strongly countably complete spaces includes locally countable compact spaces and
complete metric spaces

In view of the following (Piotrowski [8], Theorem 4 6, see also Lemma 3 of Piotrowski [9])

Every quasi-regular, strongly countably complete space X is a Baire space

Theorem A is a strong generalization of the following

(Piotrowski [8], Theorem 4 5) Let X be a space, ¥ be quasi-regular, strongly countably complete
and Z be metric If f: X x Y — Z is quasi-continuous with respect to z, then for all z € X the set of
points of joint continuity of f is a dense G, of {z} x Y Further, observe that our Theorem A answers,
in positive, the following

(Piotrowski [8], Problem 4 11) Does Theorem 4 5 (of [8]) hold if Y is only assumed to be a quasi-
regular Baire space?

The following Theorem B is the main result of this paper and its proof easily follows from the lemma
and Theorem A

THEOREM B. Let X be first countable, Y be Baire and Z be Moore If f: X x Y — Z has all
its z-sections f, quasi-continuous and all its y-sections f, continuous, then for all z € X, the set of
points of continuity of f is a dense G subset of {z} x Y

The above result strongly generalizes (see the assumptions upon Y and Z) the following known
theorem

(Piotrowski [8], Theorem 4 8, see also Theorem 5 of Piotrowski [9]) Let X be first countable, Y be
strongly countably complete, quasi-regular and Z be a metric space If f: X x Y — Z is a function
such that all its z-sections f, are quasi-continuous and all its y-sections f, are continuous, then for all
z € X, the set of points of joint continuity of f is a dense G4 subset of {z} x Y’

Our Theorem B generalizes in many ways Mibu's First Theorem — see Introduction

It is also closely related to Mibu's Second Theorem and Debs' Theorem — ibidem Observe though,
that quasi-continuity of a function does not imply — nor is implied, by the condition of being of first
class — in the sense of Debs

Really, let f : [0,1] — R be given by f(z) =0, if z # 3. Then such a function f is of first class, in
the sense of Debs and, clearly, it is not quasi-continuous

There are quasi-continuous functions f: R — R which are of arbitrary class of Baire or not
Lebesgue measurable — see Neubrunn [5] for more details

REMARK 1. The studies of the continuity points of functions whose ranges are not necessarily
metric have been done already in the 1960's, see Klee and Schwarz [10] or later in the 1980's, see

Dubins [11], we omit here an extensive literature of this approach, when the range is a uniform space

REMARK 2. Recently, the author has obtained some results of this paper using though entirely

different techniques, see Piotrowski [12]
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