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ABSTRACT. In this paper we prove two fixed point theorems for the generalized metric spaces
introduced by Dhage.

In a recent paper, Dhage (1] defined a generalized metric space as follows: Let
D: X x X x X — R with the following properties:

(i) D(z,y,2) > 0 for each z,y, z € X, with equality if and only if z = y = 2,
(11) D(z,y,2) = D(y,z,2) = D(z, 2, y) =--- (symmetry)
(ili) D(z,y,2) < D(z,y,0) + D(z,a,2) + D(a,y,2), for each z,y,z € X.
2-metric spaces are defined by a function d : X x X x X — R with properties (ii) and (iii)
above, and (i) replaced by

(i") For each distinct pair z,y € X, there exists a z € X such that d(z,y, z) # 0, and d(z,y,2) =0
if any two of the triplet z,y, z are equal.

A number of fixed point theorems have been proved for 2-metric spaces. However, Hsiao 2]
showed that all such theorems are trivial in the sense that the iterations of f are all colinear. The
situation for D-metric spaces is quite different. Some specific examples of D-metric spaces appear
in [1].

The purpose of this paper to prove two general fixed point theorems for D-metric spaces.

THEOREM 1. Let X be a complete and bounded D-metric space, f a selfmap of X satisfying

D(Tz,Ty,Tz) < qmax{D(z,y,2), D(z, Tz, z), D(y, Ty, z),
D(z,Ty,z2), D(y, Tz, 2)} (1)

for all ,y,z € X, 0 < ¢ < 1. Then T has a unique fixed point p in X, and T is continuous at p.

PROOF. Let 2o € X and define 41 = Tx,. If 2,41 = z,, for some n, then T has a fixed
point. Assume that z,,; # z,, for each n. In (1), setting £ = Zn_1, Yy = Tn, 2 = Tnyp, we have

D(Tn, Trnt1,Tntp) < qmax{D(Tn—1,Tn, Tntp-1); D(Tn-1,ZTn, Tnip-1),
D(Zn, Tnt1, Tntp—1), D(Tn-1,Tns1, Tntp-1),
D(zmzmzn+p—l)}‘ (2)
But
D(Zn-1,Tn, Tntp-1) < gmax{D(zn-2, Tn—1,Zntp-2); D(Tn-2, Tn-1,ZTn+p-2),
D(Zn—1,Tn, Tntp-2)s D(Tn-2, Tn, Tntp-2),

D(zn—l, In—l,xn-f-p—Z)}, (3)
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D(Tn, Tnt1,Tz4p—1 < qmax{D(Tn_1,Zn, Tn+p-2), D(Tn-1,Tn, Tnt+p-2),
D(Zn,Tnt1,Tnsp-2), D(Tn—1, Tnt1, Tnip-2),
D(Zp, Tny Tntp-2)}s 4)
D(Zn-1,Zn+1,Tntp-1) < qMax{D(Tn-2,Tn, Tn+p-2), D(Tn-2,Tn—1,Tn+p-2),
D(Tn,Tnt1) Tnyp-2), D(Tn-2, Tnt1, Tntp-2),
D(:cn,x,._l,z,..,,,,_l)}, (5)
and
D(Zn,Tn, Tntp—1) < qmax{D(Tn_1,ZTn-1,Zn+p-2), D(Tn—1,Tn, Tnyp-2)}- (6)

Substituting (3) - (6) into (2) gives

D(Inyxrﬁ—l, I'H-P) < q2 ma'XD(zav Tp, ZC)y

a,b,c

wheren—2<a<n, n—-1<b<n+1, and ¢c =n+p— 2. Continuing this process it follows that
D(Imzn+l’xn+p—l) <q TE’C‘D(:’:mIb’ zc), (7

wherenow 0<a<n, 1<b<n+1,and c=p. Let M :=sup,, ,ex D(z,y,2). Then, it follows
from (7) that
D(z‘n, Tn+1, I'n+p) < an’ (8)

Using (iii) and (8),

D(Zn, Tntps Tntptt) < D(Tn, Tntp, Tnt1) + D(Tn, Tnt1; Tntptt) + D(Tnt1, Tntp Tntprt)
< 2M@" + D(ZTnt1; Tntp) Tntptt)
< 2Mq™ + D(Zpt1, Tntpr Tnt2) + D(Tng1, Tnt2y Tniptt)
+ D(Zn42, Tntp) Tntptt)
<2M(q" + ") + D(Tnt2, Tnipr Tngpr1) <o
<2M(g*+q" 4+ @) + D(Tngp—1, Tntps Tntpit)

n+p n
S2qukS21qu —0 asn— oo.

k=n
Therefore {z,} is D-Cauchy. Since X is complete, {z.} converges. Call the limit p.
From (1),

D(zn, Tnt1, Tp) < qmax{D(Tn—1,Zn, D), D(Tn, Tn+1,P); D(Tn-1,Tn+1,D), D(zn,zn,p)}-

Taking the limit as n — oo, and using the fact that D is continuous, yields D(p, p, Tp) < 0, which
implies that p = Tp.
To prove uniqueness, assume that w # p is also a fixed point of T. From (1),
D(p’ wyp) = D(Tp7 Tw, Tp)
< gmax{D(p, w, p), D(p, Tp, p), D(w, Tw, p), D(p, Tw, p), D(w, Tp, p)}
= qmﬂx{D(P; w:p)’D(w: 'UJ,IJ)} = qD(w7 w’p)- (9)
But

D(w’ wyp) = D(wip’ w) = D(T'LU, Tp, Tw)
< qrna'x{D(w, b, w)) D(wr Tw, w), D(p, Tp, w)a D(wv Tp, w)» D(pa Tw, w)}
=qma‘x{D(wyp,w))D(p’p,w)} =qD(p,p,'w) (10)
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Combining (9) and (10) yiclds D(p, w,p) < ¢>*D(p,w, p), a contradiction. Therefore p = w.
To show that T is continuous at p, let {y»} C X with limy,, = p. Then, substituting in (1),
with £ = z = p, y = y,, wec obtain

D(Tp, Tyn, Tp) < gmax{D(p,yn,p), D(p, TP, p), D(yn, Tyn,p),
D(p, Tyn,p), D(y-, Tp,p)} (11)

Taking the limsup of (11), we obtain
lim sup D(p, Tyn, p) < gmax{0,0,limsup D(p, Tyx,p), 0},
which implies that limTy, = p = Tp, and T is continuous at p.

COROLLARY 1. Let X be a complete and bounded D-metric space, m a positive integer,
T a selfmap of X satisfying

D(T™z,T™y,T™z2) < qmax{D(:L‘,y, z),D(z,T™z,2), D(y, T™y, 2),
D(z,T™y,z), D(y, Tz, )} 17

for all z,y,2 € X, 0 < g < 1. Then T has a unique fixed point p in X, and T™ is continuous at p.

PROOF. From Theorem 1, T™ has a unique fixed point p, and T™ is continuous at p. But
Tp = T(T™p) = T™(Tp), and Tp is also a fixed point of T™. Since the fixed point is unique,
p=Tp.

THEOREM 2. Let X be a compact D-metric space, f a continuous selfmap of X satisfying

D(Tz,Ty,Tz) < max{D(z,y,2), D(z,Tz,2), D(y, Ty, ),
D(z,Ty,z),D(y, Tz, z)} (12)

for all z,y,z € X. Then T has a unique fixed point p in X.
PROOF. Since X is compact, both sides of (12) are bounded.

Case I. Suppose that the right-hand-side of (12) is positive for all z,y, z in X. Define

Fz,y,2) = D(Tz,Ty,Tz)
2= max{D(z,y, z), D(z, Tz, z), D(y, Ty, 2), D(z, Ty, z), D(y, Tz, 2)}

Since T and D are continuous, so is f. The compactness of X implies that f assumes its maximum
at some point (u,v,w) in X. Call the value c¢. From (12), it follows that 0 < ¢ < 1. Thus T now
satisfies (1) with ¢ = ¢. By Theorem 1, T has a unique fixed point p.

Case II.  Suppose there exists a point (z,y, z) such that the right-hand-side of (12) is zero.
Then, in particular, z = Tz = z, and z is a fixed point of T. Suppose that w is also a fixed point
of T. Then, using the same argument as in Theorem 1, it follows that £ = w, and the fixed point
is unique.

COROLLARY 2. Let X be a compact D-metric space, m a positive integer, T a continuous
selfmap of X satisfying

D(me? Tmy’ T"‘z) < mx{D(x’ y7 z)’ D(z’ T’nz’ z)1 D(y’ Tmy7 z)’
D(z,T™y, 2), D(y, T™z, 2)} (12)



460 B. E. RHOADES

for all z,y,2z € X. Then T has a unique fixed point p in X.
The proof of Corollary 2 parallcls that of Corollary 1.

Theorem 2.1 and 2.2 of Dhage (1] are spccial cascs of Theorems 1 and 2 of this paper.
There are two limitations involving fixed point theorems on D-metric spaces. The first is that

the proof of the existence of a fixed point appcars to require that X be bounded. The second

is that there is apparently no reasonable contractive definition for a pair of maps on a D-mectric
space.
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