

APPROXIMATION BY WEIGHTED MEANS OF WALSH-FOURIER SERIES

F. MÓRICZ*

Bolyai Institute, University of Szeged
Aradi vértanúk tere 1, 6720 Szeged, HUNGARY

B. E. RHOADES**

Department of Mathematics, Indiana University
Bloomington, Indiana 47405, U S A

(Received April 26, 1993 and in revised form February 20, 1995)

ABSTRACT. We study the rate of approximation to functions in L^p and, in particular, in $\text{Lip}(\alpha, p)$ by weighted means of their Walsh-Fourier series, where $\alpha > 0$ and $1 \leq p \leq \infty$. For the case $p = \infty$, L^p is interpreted to be C_W , the collection of uniformly W continuous functions over the unit interval $[0, 1]$. We also note that the weighted mean kernel is quasi-positive, under fairly general conditions.

1991. Mathematics Subject Classification. Primary 41A30.

KEY WORDS AND PHRASES: Walsh system, Walsh-Fourier series, weighted mean, rate of convergence, Lipschitz class, Walsh-Dirichlet kernel, Walsh-Fejér kernel, quasi-positive kernel.

1. INTRODUCTION.

We consider the Walsh orthonormal system $\{w_k(x) : k \geq 0\}$ defined on the unit interval $I := [0, 1]$ using the Paley enumeration (see [4]).

Let \mathcal{P}_n denote the collection of Walsh polynomials of order less than n ; that is, functions of the form

$$P(x) := \sum_{k=0}^{n-1} a_k w_k(x),$$

where $n \geq 1$ and $\{a_k\}$ is any sequence of real numbers.

the approximation by Walsh polynomials in the norms of $L^p := L^p(I)$, $1 \leq p < \infty$, and $C_W := C_W(I)$. The class C_W is the collection of all functions $f : I \rightarrow \mathbb{R}$ that are uniformly continuous from the dyadic topology of I into the usual topology of \mathbb{R} ; briefly, uniformly W -continuous. The dyadic topology is generated by the collection of dyadic intervals of the form

$$I_m := [k2^{-m}, (k+1)2^{-m}), \quad k = 0, 1, \dots, 2^m - 1; \quad m = 0, 1, \dots$$

For C_W we shall write L^∞ . Set

$$\|f\|_p := \left\{ \int_0^1 |f(x)|^p dx \right\}^{1/p}, \quad 1 \leq p < \infty,$$
$$\|f\|_\infty := \sup\{|f(x)| : x \in I\}.$$

The best approximation of a function $f \in L^p$, $1 \leq p \leq \infty$, by polynomials in \mathcal{P}_n is defined by

$$E_n(f, L^p) := \inf_{P \in \mathcal{P}_n} \|f - P\|_p.$$

For $f \in L^p$, the modulus of continuity is defined by

$$\omega_p(f, \delta) := \sup\{\|f(\cdot + t) - f(\cdot)\|_p : |t| < \delta\},$$

where $\delta > 0$ and $+$ denotes dyadic addition. For $\alpha > 0$, the Lipschitz classes in L^p are defined by

$$\text{Lip}(\alpha, p) := \{f \in L^p : \omega_p(f, \delta) = \mathcal{O}(\delta^\alpha) \text{ as } \delta \rightarrow 0\}.$$

Concerning further properties and explanations, we refer the reader to [3], whose notations are adopted here as well.

2. MAIN RESULTS.

For $f \in L^1$, its Walsh-Fourier series is defined by

$$\sum_{k=0}^{\infty} a_k w_k(x), \quad \text{where } a_k := \int_0^1 f(t) w_k(t) dt. \quad (2.1)$$

The n th partial sum of the series in (2.1) is

$$s_n(f, x) := \sum_{k=0}^{n-1} a_k w_k(x), \quad n \geq 1,$$

which can also be written in the form

$$s_n(f, x) = \int_0^1 f(x + t) D_n(t) dt,$$

where

$$D_n(t) := \sum_{k=0}^{n-1} w_k(t), \quad n \geq 1,$$

is the Walsh-Dirichlet kernel of order n .

Throughout, $\{p_k : k \geq 1\}$ will denote a sequence of nonnegative numbers, with $p_1 > 0$. The weighted means for series (2.1) are defined by

$$t_n(f, x) := \frac{1}{P_n} \sum_{k=1}^n p_k s_k(f, x),$$

where

$$P_n := \sum_{k=1}^n p_k, \quad n \geq 1.$$

We shall always assume that

$$\lim_{n \rightarrow \infty} P_n = \infty,$$

which is the condition for regularity.

The representation

$$t_n(f, x) = \int_0^1 f(x + t) L_n(t) dt \quad (2.2)$$

plays a central role in the sequel, where

$$L_n(t) := \frac{1}{P_n} \sum_{k=1}^n p_k D_k(t), \quad n \geq 1, \quad (2.3)$$

is the weighted mean kernel.

THEOREM 1. Let $f \in L^p$, $1 \leq p \leq \infty$, $n := 2^m + k$, $1 \leq k \leq 2^m$, $m \geq 1$.

(i) If $\{p_k\}$ is nondecreasing and satisfies the condition

$$\frac{np_n}{P_n} = \mathcal{O}(1), \quad (2.4)$$

then

$$\|t_n(f) - f\|_p \leq \frac{3}{P_n} \sum_{j=0}^{m-1} 2^j p_{2^j+1-1} \omega_p(f, 2^{-j}) + \mathcal{O}(\omega_p(f, 2^{-m})). \quad (2.5)$$

(ii) If $\{p_k\}$ is nonincreasing, then

$$\|t_n(f) - f\|_p \leq \frac{3}{P_n} \sum_{j=0}^{m-1} 2^j p_{2^j} \omega_p(f, 2^{-j}) + \mathcal{O}(\omega_p(f, 2^{-m})). \quad (2.6)$$

THEOREM 2. Let $f \in \text{Lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p \leq \infty$. Then for $\{p_k\}$ nondecreasing,

$$\|t_n(f) - f\|_p = \begin{cases} \mathcal{O}(n^{-\alpha}) & \text{if } 0 < \alpha < 1, \\ \mathcal{O}(n^{-1} \log n) & \text{if } \alpha = 1, \\ \mathcal{O}(n^{-1}) & \text{if } \alpha > 1; \end{cases} \quad (2.7)$$

for $\{p_k\}$ nonincreasing,

$$\|t_n(f) - f\|_p = \mathcal{O}\left(\frac{1}{P_n} \sum_{j=0}^{m-1} 2^{(1-\alpha)j} p_{2^j} + 2^{-\alpha m}\right). \quad (2.8)$$

Given two sequences $\{p_k\}$ and $\{q_k\}$ of nonnegative numbers, we write $p_k \asymp q_k$ if there exist two positive constants C_1 and C_2 such that

$$C_1 q_k \leq p_k \leq C_2 q_k \quad \text{for all } k \text{ large enough.}$$

We present two particular cases for nonincreasing $\{p_k\}$.

Case (i): $p_k \asymp (\log k)^{-\beta}$ for some $\beta > 0$. Then $P_n \asymp n(\log n)^{-\beta}$. It follows from (2.8)

$$\|t_n(f) - f\|_p = \begin{cases} \mathcal{O}(n^{-\alpha}) & \text{if } 0 < \alpha < 1 \text{ and } \beta > 0, \\ \mathcal{O}(n^{-1} \log n) & \text{if } \alpha = 1 \text{ and } 0 < \beta < 1, \\ \mathcal{O}(n^{-1} \log n \log \log n) & \text{if } \alpha = \beta = 1, \\ \mathcal{O}(n^{-1} (\log n)^\beta) & \text{if } \alpha = 1 \text{ and } \beta = 1, \\ & \text{or if } \alpha > 1 \text{ and } \beta > 0. \end{cases}$$

Case (ii): $p_k \asymp k^{-\beta}$ for some $0 < \beta \leq 1$. Then $P_n \asymp n^{1-\beta}$ if $0 < \beta < 1$ and $P_n \asymp \log n$ if $\beta = 1$. The case $\beta > 1$ is unimportant since $P_n = \mathcal{O}(1)$. By (2.8),

$$\|t_n(f) - f\|_p = \begin{cases} \mathcal{O}(n^{-\alpha}) & \text{if } \alpha + \beta < 1, \\ \mathcal{O}(n^{\beta-1} \log n + n^{-\alpha}) & \text{if } \alpha + \beta = 1, \\ \mathcal{O}(n^{\beta-1}) & \text{if } \alpha + \beta > 1 \text{ and } \beta > 1, \\ \mathcal{O}((\log n)^{-1}) & \text{if } \beta = 1, \end{cases}$$

where $\alpha > 0$ and $\beta > 0$.

REMARK 1. The slower P_n tends to infinity, the worse is the rate of approximation.

REMARK 2. Watari [6] has shown that a function $f \in L^p$ belongs to $\text{Lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p \leq \infty$ if and only if

$$E_n(f, L^p) = \mathcal{O}(n^{-\alpha}).$$

Thus, for $0 < \alpha < 1$, the rate of approximation to functions f in the class $\text{Lip}(\alpha, p)$ by $t_n(f)$ is as good as the best approximation.

REMARK 3. For $\alpha > 1$, the rate of approximation by $t_n(f)$ in the class $\text{Lip}(\alpha, p)$ cannot be improved too much.

THEOREM 3. If for some $f \in L^p$, $1 \leq p \leq \infty$,

$$\|t_{2^m}(f) - f\|_p = o(P_{2^m}^{-1}) \quad \text{as } m \rightarrow \infty, \quad (2.9)$$

then f is a constant.

If $p_k = 1$ for all k , then the $t_n(f, x)$ are the $(C, 1)$ - means (i.e., the first arithmetic means) of the series in (2.1). In this case, Theorem 2 was proved by Yano [8] for $0 < \alpha < 1$ and by Jastrebova [1] for $\alpha = 1$; Theorem 3 also reduces to a known result (see e.g. [5, p. 191]).

3. AUXILIARY RESULTS

Let

$$K_n(t) := \frac{1}{n} \sum_{k=1}^n D_k(t), \quad n \geq 1 \quad (3.1)$$

by the Walsh-Fejer kernel.

LEMMA 1. (see [7]). Let $m \geq 0$ and $n \geq 1$. Then $K_{2^m}(t) \geq 0$ for each $t \in I$,

$$\int_0^1 |K_n(t)| dt \leq 2, \quad \text{and} \quad \int_0^1 K_{2^m}(t) dt = 1.$$

LEMMA 2. Let $n := 2^m + k$, $1 \leq k \leq 2^m$, and $m \geq 1$. Then for $L_n(t)$ defined in (2.3),

$$\begin{aligned} P_n L_n(t) = & - \sum_{j=0}^{m-1} r_j(t) w_{2^j-1}(t) \sum_{i=1}^{2^j-1} i(p_{2^{j+1}-i} - p_{2^{j+1}-i-1}) K_i(t) \\ & - \sum_{j=0}^{m-1} r_j(t) w_{2^j-1}(t) 2^j p_{2^j} K_{2^j}(t) \\ & + \sum_{j=0}^{m-1} (P_{2^{j+1}-1} - P_{2^j-1}) D_{2^{j+1}}(t) \\ & + (P_n - P_{n-k-1}) D_{2^m}(t) + r_m(t) \sum_{i=1}^k p_{2^m+i} D_i(t), \end{aligned} \quad (3.2)$$

where the $r_j(t)$ are the Rademacher functions.

Proof. From (2.3)

$$\begin{aligned} P_n L_n(t) &= \sum_{i=1}^{2^m-1} p_i D_i(t) + \sum_{i=2^m}^{2^m+k} p_i D_i(t) \\ &= \sum_{j=0}^{m-1} \sum_{i=0}^{2^j-1} p_{2^j+i} D_{2^j+i}(t) + \sum_{i=0}^k p_{2^m+i} D_{2^m+i}(t) \\ &= \sum_{j=0}^{m-1} \sum_{i=0}^{2^j-1} p_{2^j+i} (D_{2^j+i}(t) - D_{2^j+1}(t)) \\ &\quad + \sum_{j=0}^{m-1} D_{2^j+1}(t) \sum_{i=0}^{2^j-1} p_{2^j+i} + \sum_{i=0}^k p_{2^m+i} D_{2^m+i}(t). \end{aligned} \quad (3.3)$$

We will make use of formula (3.4) of [3]:

$$D_{2^j+1}(t) - D_{2^j+i}(t) = r_j(t)w_{2^j-1}(t)D_{2^j-i}(t), \quad 0 \leq i < 2^j,$$

and the formula in line 4 from below of [4, p. 46]:

$$D_{2^m+i}(t) = D_{2^m}(t) + r_m D_i(t), \quad 1 \leq i \leq 2^m.$$

Substituting these into (3.3) yields

$$\begin{aligned} P_n L_n(t) &= - \sum_{j=0}^{m-1} r_j(t)w_{2^j-1}(t) \sum_{i=0}^{2^j-1} p_{2^j+i} D_{2^j-i}(t) \\ &\quad + \sum_{i=0}^{m-1} (P_{2^j+i} - P_{2^j-1}) D_{2^j-i}(t) \\ &\quad + (P_n - P_{n-k-1}) D_{2^m}(t) + r_m(t) \sum_{i=1}^k p_{2^m+i} D_i(t). \end{aligned}$$

Hence (3.2) follows, by noting that

$$D_i(t) = i K_i(t) - (i-1) K_{i-1}(t), \quad i \geq 1, \quad K_0(t) := 0,$$

(see (3.1)) and accordingly

$$\begin{aligned} \sum_{i=0}^{2^j-1} p_{2^j+i} D_{2^j-i}(t) &= \sum_{i=1}^{2^j} p_{2^j+1-i} D_i(t) \\ &= \sum_{i=1}^{2^j-1} i(p_{2^j+1-i} - p_{2^j+1-i-1}) K_i(t) + 2^j p_{2^j} K_{2^j}(t). \end{aligned}$$

Motivated by (3.2), we define a linear operator R_n by

$$R_n(t) := \frac{1}{P_n} \sum_{i=1}^k p_{2^m+i} D_i(t), \quad (3.4)$$

where $n := 2^m + k$, $1 \leq k \leq 2^m$, and $m \geq 1$. A Sidon type inequality of [2] implies that R_n as well as the weighted mean kernel L_n defined in (2.3) are quasi-positive.

LEMMA 3. Let $\{p_k\}$ be a sequence of nonnegative numbers either nondecreasing and satisfying condition (2.4) or merely nonincreasing, and let R_n be defined by (3.4). Then there exists a constant C such that

$$I_n := \int_0^1 |R_n(t)| dt \leq C, \quad n \geq 1. \quad (3.5)$$

PROOF. By [2, Lemma 1 for $p = 2$],

$$I_n \leq \frac{4k^{1/2}}{P_n} \left(\sum_{i=1}^k p_{2^m+i}^2 \right)^{1/2}$$

Due to monotonicity,

$$I_n \leq \begin{cases} \frac{4kp_n}{P_n} \leq \frac{2np_n}{P_n} & \text{if } \{p_k\} \text{ is nondecreasing,} \\ \frac{4kp_{2^m+1}}{P_n} \leq 4 & \text{if } \{p_k\} \text{ is nonincreasing.} \end{cases}$$

By (2.4), hence (3.5) follows.

LEMMA 4 (see [3]). If $g \in \mathcal{P}_{2^m}$, $f \in L^p$, where $m \geq 0$ and $1 \leq p \leq \infty$, then

$$\left\| \int_0^1 r_m(t)g(t)[f(\cdot+t) - f(\cdot)]dt \right\|_p \leq 2^{-1}\omega_p(f, 2^{-m})\|g\|_1.$$

4. PROOFS OF THEOREMS 1-3.

PROOF OF THEOREM 1. We shall present the details only for $1 \leq p < \infty$. By (2.2), (3.2), and the usual Minkowski inequality,

$$\begin{aligned} P_n\|t_n(f) - f\|_p &= \left\{ \int_0^1 \left| \int_0^1 P_n L_n(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &\leq \sum_{j=0}^{m-1} \left\{ \int_0^1 \left| \int_0^1 r_j(t)g_j(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &\quad + \sum_{j=0}^{m-1} \left\{ \int_0^1 \left| \int_0^1 r_j(t)h_j(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &\quad + \sum_{j=0}^{m-1} (P_{2^{j+1}-1} - P_{2^j-1}) \left\{ \int_0^1 \left| \int_0^1 D_{2^{j+1}}(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &\quad + (P_n - P_{n-k-1}) \left\{ \int_0^1 \left| \int_0^1 D_{2^m}(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &\quad + P_n \left\{ \int_0^1 \left| \int_0^1 r_m(t)R_n(t)[f(x+t) - f(x)]dt \right|^p dx \right\}^{1/p} \\ &=: I_{1n} + I_{2n} + I_{3n} + I_{4n} + I_{5n}, \quad \text{say,} \end{aligned} \tag{4.1}$$

where

$$\begin{aligned} g_j(t) &:= w_{2^j-1}(t) \sum_{i=1}^{2^j-1} i(p_{2^{j+1}-i} - p_{2^{j+1}-i-1})K_i(t), \\ h_j(t) &:= 2^j p_{2^j} w_{2^j-1}(t)K_{2^j}(t). \end{aligned}$$

From Lemma 1,

$$\begin{aligned} \int_0^1 |g_j(t)|dt &\leq \sum_{i=1}^{2^j-1} i|p_{2^{j+1}-i} - p_{2^{j+1}-i-1}| \int_0^1 |K_i(t)|dt \\ &\leq 2 \sum_{r=2^j+1}^{2^{j+1}-1} (2^{j+1}-r)|p_r - p_{r-1}| =: A_j, \quad \text{say,} \end{aligned}$$

If $\{p_k\}$ is nondecreasing, we have

$$\begin{aligned} A_j &= 2^{j+2} \sum_{r=2^j+1}^{2^{j+1}-1} (p_r - p_{r-1}) - 2 \sum_{r=2^j+1}^{2^{j+1}-1} (rp_r - (r-1)p_{r-1}) + 2 \sum_{r=2^j+1}^{2^{j+1}-1} p_{r-1} \\ &= 2^{j+2}(p_{2^{j+1}-1} - p_{2^j}) - 2[(2^{j+1}-1)p_{2^{j+1}-1} - 2^j p_{2^j}] + 2(P_{2^{j+1}-2} - P_{2^j-1}) \\ &< 2(P_{2^{j+1}-1} - P_{2^j-1}) \leq 2^{j+1}p_{2^{j+1}-1}. \end{aligned}$$

If $\{p_k\}$ is nonincreasing, we have

$$A_j = 2^{j+2} \sum_{r=2^j+1}^{2^{j+1}-1} (p_{r-1} - p_r) + 2 \sum_{r=2^j+1}^{2^{j+1}-1} (rp_r - (r-1)p_{r-1}) - 2 \sum_{r=2^j+1}^{2^{j+1}-1} p_{r-1} < 2^{j+1}p_{2^j}.$$

Thus, by Lemma 4, for $\{p_k\}$ nondecreasing,

$$I_{1n} \leq \sum_{j=0}^{m-1} 2^j p_{2^{j+1}-1} \omega_p(f, 2^{-j}), \quad (4.2)$$

and for $\{p_k\}$ nonincreasing,

$$I_{1n} \leq \sum_{j=0}^{m-1} 2^j p_{2^j} \omega_p(f, 2^{-j}). \quad (4.3)$$

Again, by Lemmas 1 and 4,

$$\int_0^1 |h_j(t)| dt \leq 2^j p_{2^j} \int_0^1 K_{2^j}(t) dt = 2^j p_{2^j},$$

whence

$$I_{2n} \leq 2^{-1} \sum_{j=0}^{m-1} 2^j p_{2^j} \omega_p(f, 2^{-j}). \quad (4.4)$$

Since

$$D_{2^m}(t) = \begin{cases} 2^m & \text{if } t \in [0, 2^{-m}), \\ 0 & \text{if } t \in [2^{-m}, 1) \end{cases}$$

(see, e.g., [5, p.7]), by the generalized Minkowski inequality,

$$\begin{aligned} I_{3n} &\leq \sum_{j=0}^{m-1} (P_{2^{j+1}-1} - P_{2^j-1}) \int_0^1 D_{2^{j+1}}(t) \left\{ \int_0^1 |f(x+t) - f(x)|^p dx \right\}^{1/p} dt \\ &\leq \sum_{j=0}^{m-1} (P_{2^{j+1}-1} - P_{2^j-1}) \omega_p(f, 2^{-j-1}) \end{aligned} \quad (4.5)$$

and

$$I_{4n} \leq (P_n - P_{n-k-1}) \omega_p(f, 2^{-m}). \quad (4.6)$$

Note that

$$P_{2^{j+1}-1} - P_{2^j-1} \leq \begin{cases} 2^j p_{2^{j+1}-1} & \text{if } \{p_k\} \text{ is nondecreasing,} \\ 2^j p_{2^j} & \text{if } \{p_k\} \text{ is nonincreasing.} \end{cases} \quad (4.7)$$

By Lemmas 3 and 4,

$$\begin{aligned} I_{5n} &\leq 2^{-1} P_n \omega_p(f, 2^{-m}) \int_0^1 |R_n(t)| dt \\ &\leq 2^{-1} C P_n \omega_p(f, 2^{-m}). \end{aligned} \quad (4.8)$$

Combining (4.1) – (4.8) yields (2.5) and (2.6).

PROOF OF THEOREM 2. For $\{p_k\}$ nondecreasing we have, from (2.4) and (2.5),

$$\begin{aligned} \|t_n(f) - f\|_p &= \mathcal{O} \left(\frac{p_{2^m}}{P_n} \sum_{j=0}^{m-1} 2^{(1-\alpha)j} + 2^{-\alpha m} \right) \\ &= \mathcal{O} \left(2^{-m} \sum_{j=0}^{m-1} 2^{(1-\alpha)j} + 2^{-\alpha m} \right). \end{aligned}$$

Hence (2.7) follows easily.

For $\{p_k\}$ nonincreasing, (2.8) is immediate.

PROOF OF THEOREM 3. By a theorem of Watari [6]

$$\|s_{2^m}(f) - f\|_p \leq 2E_{2^m}(f, L^p).$$

Thus, from (2.9),

$$\|s_{2^m}(f) - f\|_p = o(P_{2^m}^{-1}). \quad (4.9)$$

Clearly,

$$\begin{aligned} P_{2^m} \{s_{2^m}(f, x) - t_{2^m}(f, x)\} &= \sum_{k=1}^{2^m} p_k \{s_{2^m}(f, x) - s_k(f, x)\} \\ &= \sum_{k=1}^{2^m-1} p_k \sum_{i=k}^{2^m-1} a_i w_i(x) \\ &= \sum_{i=1}^{2^m-1} P_i a_i w_i(x). \end{aligned}$$

Now (2.9) and (4.9) imply

$$\lim_{m \rightarrow \infty} \left\| \sum_{i=1}^{2^m-1} P_i a_i w_i(x) \right\|_p = 0.$$

Since the L^p -norm dominates the L^1 -norm for $p > 1$, it follows that for $j \geq 1$,

$$\begin{aligned} |P_j a_j| &= \lim_{m \rightarrow \infty} \left| \int_0^1 w_j(x) \sum_{i=1}^{2^m-1} P_i a_i w_i(x) dx \right| \\ &\leq \lim_{m \rightarrow \infty} \left\| \sum_{i=1}^{2^m-1} P_i a_i w_i(x) \right\|_1 = 0. \end{aligned}$$

Hence we conclude that $a_j = 0$ for all $j \geq 1$. Therefore, $f = a_0$, a constant.

* This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant #234.

** This research was completed while the author was a Fulbright scholar at the Bolyai Institute, University of Szeged, Hungary, during the fall semester in the academic year 1992/93.

REFERENCES

1. JASTREBOVA, M.A., On approximation of functions satisfying the Lipschitz condition by arithmetic means of their Walsh-Fourier series, *Mat. Sb.* **71** (1966), 214-226.
2. MÓRICZ, F. and SCHIPP, F., On the integrability and L^1 -convergence of Walsh series with coefficients of bounded variation, *J. Math. Anal. Appl.* **146** (1990), 99-109.
3. MÓRICZ, F. and SIDDIQI, A.H., Approximation by Nörlund means of Walsh-Fourier series, *J. Approx. Theory* **70** (1992), 375-389.
4. PALEY, R.E.A.C., A remarkable system of orthogonal functions, *Proc. London Math. Soc.* **34** (1932), 241-279.
5. SCHIPP, F., WADE, W.R., and SIMON, P., "Walsh Series. An introduction to Dyadic Harmonic Analysis", Adadémiai Kiadó, Budapest, 1990.
6. WATARI, C., Best approximation by Walsh polynomials, *Tôhoku Math. J.* **15** (1963), 1-5.
7. YANO, SH., On Walsh series, *Tôhoku Math. J.* **3** (1951), 223-242.
8. YANO, SH., On approximation by Walsh functions, *Proc. Amer. Math. Soc.* **2** (1951), 962-967.

Special Issue on Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/bvp/guidelines.html>. Authors should follow the Boundary Value Problems manuscript format described at the journal site <http://www.hindawi.com/journals/bvp/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	May 1, 2009
First Round of Reviews	August 1, 2009
Publication Date	November 1, 2009

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático,
Facultad de Matemáticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain;
juanjose.nieto.roig@usc.es

Guest Editor

Donal O'Regan, Department of Mathematics, National
University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie