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ABSTRACT. We study the rate of approximation to functions in L and, in particular, in Lip(a, p)
by weighted means of their Walsh-Fourier series, where c > 0 and 1 < p _< cry. For the case

p c, L is interpreted to be Cw, the collection of uniformly W continuous functions over the

unit interval [0, 1). We also note that the weighted mean kernel is quasi-positive, under fairly
general conditions.
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1. INTRODUCTION.
We consider the Walsh orthonormal system {wk(x) k _> 0} defined on the unit interval

I :-- [0,1) using the Paley enumeration (see [4]).
Let 79, denote the collection of Walsh polynomials of order less than n; tlat is, functions of

the form

P(x) Z a.wk(x),
k-0

where n _> 1 and {a} is any sequence of real numbers.
the approximation by Walsh polynomials in the norms of Lr’ :- L’(I), 1 _< p < oz, and

Cw := Cw(I). The class Cw is the collection of all functions f I R that are uniformly
continuous from the dyadic topology of I into the usual topology of R; briefly, uniformly W-
continuous. The dyadic topology is generated by the collection of dyadic intervals of the form

I, := [k2-’, (k + 1)2-’), k 0, 1,... ,2m- 1;

For Cw we shall write L. Set

’lfllr, :-{foo "f(x)lr’dzl l<p< o,

Ilfllo,, ’-sup{If(x)l’x

The best approximation of function f E L, 1 <_ p _< cx, by polynomials in Pn is defined by

E,.,(f Lr’) := inf IIf-PIl.PEP,=
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For f E Lp, the modulus of continuity is defined by

wp(f, )’: sup{llf(.-t)- f(’)ll "ltl <

where $ > 0 and -i- denotes dyadic addition. For a > 0, the Lipschitz classes in L are defined by

Lip(a,p) := {f e LP’w(f, di) O(’) as 8 0}.

Concerning further properties and explanations, we refer the reader to [3], whose notations

are adopted here as well.

2. MAIN RESULTS.
For f Lx, its Walsh-Fourier series is defined by

foEawk(x)’ where ak f(t)wk(t)dt. (2.1)
k=O

The nth partial sum of the series in (2.1) is

n-1

8n(f,x) := E akWk(X)
k=0

n>l,

which can also be written in the form

s(f,z) f(z-i-t)D,(t)dt,

where

D,(t) := E w(t), n >_ 1,
k=0

is the Walsh-Dirichlet kernel of order n.

Throughout, {p k >_ 1} will denote a sequence of non.negative numbers, with Pl > O. The

weighted means for series (2.1) are defined by

where

We shall always assume that

which is the condition for regularity.
The representation

P’* Epk’

k’-I

n>l.

t,, (f x) f(x-i-t)L,, (t)dt

plays a central role in the sequel, where

(2.2)

L,(t) := EpkDk(t),
k=l

n> 1, (2.3)

is the weighted mean kernel.
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THEOREM 1. Let f E Lp, _< p _< c, n := 2 + k, 1 _< k _< 2m, rn _> 1.

(i) If {pk} is nondecreasing and satisfies the condition

(2.4)

then
rn--1

j=O

(ii) If {pk } is nonincresing, then

m-1

[]t,(f) flip <- E 2Jp2"WP(f’ 2-J) + O(Wp(f, 2-’)).
3--0

(2.6)

ing,

THEOREM 2. Let f e Lip(a, p) for some a > 0 and 1 _< p _< c. Then for {pk} nondecreas-

O(n o)
IIt(f) flip O(T/,-1 logn)

O(n-)

if O<a<l,
if a 1,
if a> 1;

(.7)

for {pk} nonincreasing,

IIt.(f) flip 0 2(1--c)p2 q- 2
3=0

Given two sequences {p} and {q} of nonnegative numbers, we write pk qk if there exist
two positive constants C1 and C2 such that

Clq. <_ pk <_ C2q. for all k large enough.

We present two particular cases for nonincreasing {Pk }.
Case (i): p (log k)-t for some/3 > 0. Then P,, n(log n) -t. It follows from (2.8)

IIt.(f)- fll

O(n-)
O(n-1 log n)
O(n-1 log nloglog n)
O(n-l(logn))

if O<a< land/>O,
if a 1 and 0 </ < 1,
if a=/= 1,
if a 1 and fl 1,
or if a> land>O.

Case (ii): pk k-t for some 0 </3 _< 1. Then P na-a if 0 </3 < 1 and P logn if/3 1.

The case/3 > 1 is unimportant since P O(1). By (2.8),

o(-)
O(n-1 log n + n-’)IIt,,(f) fll O(na-x)
O((log n) -1

if a+/3 < 1,
if a+/3 1,
if a+/3> land/3> 1,
if /3=1,

where a > 0 and/3 > 0.

REMARK 1. The slower P, tends to infinity, the worse is the rate of approximation.

REMARK 2. Watari [6] has shown that a function f
_
Lp belongs to Lip(a,p) for some

a > 0 and 1 _< p _< cx if and only if

E,.,(f,Lp) O(n-’).



4 F. MORICZ AND B. E. RIOADES

Thus, for 0 < a < 1, the rate of approximation to functions f in the class Lip(a,p) by tn(f) is as

good as the best approximation.

REMARK 3. For a > 1, the rate of approximation by tn(f) in the class Lip(a, p) cannot be

improved too much.
THEOREM 3. If for some f

lit2"(/) fl] o(Pf2) as m oo, (2.9)

then f is a constant.
If p 1 for all k, then the t,(f,x) are the (C, 1) means (i.e., the first arithmetic means)

of the series in (2.1). In this case, Theorem 2 was proved by Yano [8] for 0 < a < 1 and by
Jastrebov [1] for 1; Theorem 3 also reduces to a known result (see e.g. [5, p. 191]).

3. AUXILIARY RESULTS
Let

K(t) := D/=($), n > 1 (3.1)
k=l

by the Walsh-Fejer kernel.
LEMMA 1. (see [7]). Let m _> 0 and n _> 1. Then K2.(t) >_ 0 for each t E I,

and

LEMMA 2. Let n := 2 + k, 1 <_ k <_ 2", and m >_ 1. Then for L,(t) defined in (2.3),

m-1 2j-1

P,L,(t) _, rj(t)w2j_l(t) i(p2j+l_i-p+_i_)Ki(t)
j=0 i=1

r(t)w2-(t)2K2(t)

--1

j=0

k

+ (P, P,--t)D2 (t)+ rm(t) +iDi(t),
where the r() e the decher nctions.

Proof. om (2.3)

(3.2)

2"--1

i=l

m--1 2-1 k

j=0 i=0

m-12J-1

j=0 /=0

(3.3)

We will make use of formula (3.4) of [3]"
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D,/, () D=,+() ,()_,()D=,_,(), 0<<2

and the formula in line 4 from below of [4, p. 46]:

D2-.+, (t) D2- (t) + r,D,(t), 1<i<2m.

Substituting these into (3.3) yields

m--I 2 --I

P,,L,(t) rj(t)w2_l(t)
j=0 i=0

m--1

+ (P2,+,
-’0

k

i=1

Hence (3.2) follows, by noting that

Di(t) iK(t) (i- l)Ki_l(t), _> 1, Ko(t) := 0,

(see (3.1)) and accordingly

2-I 2

pj+,D, _, (t) p2+l_,D,(t)
,=0 i-1

2

i(P2+1-, p2,+,-i-1)Ki(t)+ 2’p,K2,(t).
i--1

Motivated by (3.2), we define a linear operator R by

1
k

P(t) Zp2-+,D, (t),
i--1

(3.4)

wheae n := 2 + k, 1

_
k

_
2", and m _> 1. A Sidon type inequality of [2] implies that R as

well as the weighted mean kernel L, defined in (2.3) are quasi-positive.
LEMMA 3. Let {pk } be a sequence of nonnegative numbers either nondecreasing and satis-

fying condition (2.4) or merely nonincreasing, and let P be deiined by (3.4). Then there exists
a constant C such that

I, [R,(t)ldt _< C, n _> 1. (3.5)

PROOF. By [2, Lemma 1 for p 2],

Due to monotonicity,

I, < 4k1/2
p2.+p.

i--1

In < 4c
if {p} is nondecreasing,

P2m+
p _< 4 if {p} is nonincreasing.

BY (2.4), hence (3.5) follows.
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LEMMA 4 (see [3]). If g E :P2-, f E L, where rn _> 0 and 1 <: p _< oo, then

r,(t)g(t)[f(.4t) f(.)]dt <_ 2-1wn(f, 2-’)[Ig[ll.

4. PROOFS OF THEOREMS 1-3.

PROOF OF THEOREM 1. We shall present the details only for 1 _< p < oo. By (2.2), (3.2),
and the usual Minkowski inequality,

j=O

i=0

i=0

/

=: I. + . +. + &. + ., say,

where

From Lemma 1,

2J-1

i=l

2j+1-1

_< 2 Z (2j+l r)[pr -Pr-l[----:
r----2/l

If {p} is nondecreasing, we have

2.+I --I 2-+I --I 2"+I --I

Aj 2j+2 Z (Pr --Pr--1)- 2 Z (rpr (r- 1)pr-1) q- 2 Z Pr-1
r--2t/ r-2i/ r----2t+

2J+2(p2#+’-I P2#) 2[(23+1 I)p2#+I-1 2Jp2’] "[- 2(P2J+1-2 P2,-l)

< 2(P2#+I-I P2-1) < 25/1P2#+I1"

If {pk} is nonincreasing, we have

2I+I-I 2i/I-I 2/I-I

A1 2i+2 Z (Pr-1 Pr) q" 2 Z (rpr (r 1)pr-1) 2 Z Pr-1 ( 2J+lp2j
r---2./ r=2i/ r--2+
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Thus, by Lemma 4, for {pk} nondecreasing,

and for (pk } nonincreasing,

Again, by Lemmas 1 and 4,

m--1

3=0

m--I

=0

(4.2)

(4.3)

whence

Since

Ihi(t)ldt < 2I K(t)dt 2p2,

m-1

I2. _< 2-1 2-#p2#w(f, 2-).
i=0

if te [0,2-m),D2-,(t)=
0 if te [2-",1)

(e, e.g., [15, P.71), by the generalid Minkowski inequality,

m-1

=0

(4.4)

and

Note that

m--1

i=0

f 2Jp2#+1_I
P2#+-t P2#-i < {

I, 2iP2
By Lemmas 3 and 4,

if {p} is nondecreasing,
if {p} is nonincreasing.

15n <_ 2-1pnwp(f, 2-m) IR(t)ldt

<_ 2-1(JP,w(f 2-m).

(4.5)

(4.6)

(4.8)

Combining (4.1) (4.8) yields (2.5) and (2.6).
PROOF OF THEOREM 2. For {p } nondecreasing we have, from (2.4) and (2.5),

IIt.($)- fit, o -. 2-)# +
j=0

0 2 E 2(1-a)i + 2-’m
j=o

Hence (2.7) follows easily.
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For {pk} nonincreasing, (2.8)is immediate.

PROOF OF THEOREM 3. By a theorem of Watari [6]

Thus, from (2.9),

Clearly,

Now (2.9) and (4.9) imply

lls2"-(f) fll <_ 2Ee (f, LP).

]]s’ (f) fll, o(p=l)

2

k=l

2"--I 2"--I

k=l

2 -1

lira Z P*aiwi(x)ll -0.
i=1 P

Since the Ln-norm dominates the Ll-norm for p > 1, it follows that for j >_ 1,

2"--I

=1

2m--1

i=1

Hence we conclude that aj 0 for all j >_ 1. Therefore, f a0, a constant.

(4.9)
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