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ABSTRACT. Suppose X is a real or complex Banach space with dual X™* and a semiscalar product
[, ]. For k areal number, a subset B of X x X will be called k-dissipative if for each pair of elements
(%1, 1), (x2, ¥) in B, there exists

he{feX [z f]=laf = 1"}

such that
Rely; — y3, h] < klzy — z[”.

This definition extends a notion of dissipativeness which is equivalent to having k equal zero here.
A number of definitions and theorems related to this original disspative notion are generalized in the
present paper to fit the k-dissipative situation, and proofs are given for the new theorems.
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1. INTRODUCTION.

The basic outline of this paper follows Yosida [5], and results stated there are expanded to fit
the more general situation presented here. Suppose X is a real or complex Banach space endowed
with a semi-scalar product [ , ] such that for a, § real numbers and z, y, z elements of X,

laz + By, 2] = alz, 2] + Bly, 2],
|l 9]l < l=l - |yl and
[z, 2] = Jal".

The equations below give some notation conventions used here. The sets B and C below are subsets
of X x X and A is a real number.
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D(B) = {z: (z,y) € B for some y}.
R(B) ={y: (z,y) € B for some z}.
B'={(y,2): (z,y) € B}.
AB = {(z,M\y) : (z,y) € B}.
B+C = {(z,y+2):(z,y) € Band (z,2) € C}.

1.1
By ={(z-u3): (z.y) € B}, D
Bz = {y: (z,y) € B} where z € D(B).
|Bz| =inf{ly| : y € Bz}.
B,f =- AB)™! where ) is such that the
stated inverse is unique.
A simple consequence of this notation is the following.
COROLLARY 1.1. AB) = Bf — I
PROOF.
B{ ~I={(z- M z~(z-)): (z,y) € B}
={(z -y, W) : (z,y) € B} 12

=AB,. O

DEFINITION 1.2. The duality map from X into X* is the multi-valued mapping F defined for
each zin X by

Fiz)={feX : [z,f] == = I’} (1.3)

According to the Hahn-Banach Theorem, F'(z) is non-void. If X is a Hilbert space, then
F(z) = z by the Riesz Representation Theorem and [y, F(z)] is the inner product of z and y.
DEFINITION 1.3. For a real number k, a subset B of X x X will be called k-dissipative if for
each pair of elements (z,, y;) and (z3, y,) in B, there exists an element f in F(z; — z2) such that

Rely, ~ vy, f] < klzy — 2. (1.4)
DEFINITION 1.4. Let D be a subset of X. The mapping T from D into X is Lipschitz with
Lipschitz constant k > 0 if for each pair of elements z;, =2 from D,
[Tz, — Tzo| < klzy — z2]. 1.5)

LEMMA 1.5. Let z and y be elements of X and suppose k is a real number. There is an element
f of F(z) such that Rel[y, f] < k|z|* if and only if |z — Ay| > (1 — Ak)|z| for each positive real number
A such that |k| < 1/A.

PROOF. If [z| = 0, the lemma holds; so assume |z| # 0.

If Rely, f] < k|z|* for some f € F(z) and A is a positive number such that |z| < 1/, then

(1= Mk)[af® = |2 — Mklef®
< Re[z, f] — ARely, f]
= Re[x = Ay, f] o
< o= Mllfl

Since f € F(z), |z| = |f| and hence (1 — Ak)|z| < |z — Ay|.
Now suppose (1 — Ak)|z| < |z — Ay| for each positive A such that |k| < 1/A. Let f, € F(z — \y)
and let hx = fi/|f,| so that |hy| = 1. This gives
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(1= 2k)|z| < |z~ Ayl
= Re[z — Ay, )]
= Re[z, h)] — ARely, h,]
< Izl - ’\Re[ya hX]"

1.7

Hence Rely, ha] < k|z| and

Rely, hy] > |z| — Ak|z| + ARely, hi]
2 |z| = Aklz] = Aly||hal (1.8)
2 |zl = A(lkll=] + [yl)-

Ife > 0and A < ¢/(|k||z| + |y| + 1), then
lel — € < Relz, ha] < Jellhal < . (1.9)

Thus limyo Re(z, hy] = |z|.

Since the closed unit sphere of X* is compact in the weak topology of X~ the sequence (h/n)
has a weak” accumulation point b € X* such that |h| < 1. Therefore Re[z, h] = |z|, Re[y, k] < k,
and since

|z| = Re[z, k] < |z||h| < |z], (1.10)
|h| = 1. Consequently, f = |z|h € F(z). O

COROLLARY 1.6. For a real number k, a subset B of X x X is k-dissipative if and only if
for each positive real number A such that [k| < 1/, and elements (z;,y,), (z2,y,) of B,

|1 = Ayy) = (22 — M)l = (1 = A)|zy — . (1.11)

PROPOSITION 1.7. If k is a real number, B is a k-dissipative subset of X x X, and Ais a
positive real number such that |k| < 1/, then B, and By are both single-valued mappings and satisfy,
respectively, the following two inequalities:

|Byw; — Byws| <

————|w; — wy| for wy,w € D(B,),and 112
—,\(1—,\1:)'"" we| for wy, wp € D(B,),an (1.12)

| Bfwy — Bfw,| < |wy — wy| for wy,we € D(BY). (1.13)

1
1- )k
Moreover, B, is (k/(1 — Ak))-dissipative and also satisfies both of the following:

By w € (BB})w= B(B}'w) forw e D(B}), and (1.14)

1
1-Xk

Byuw| < Buw| forallw € D(B) N D(B}). 1.15
A

PROOF. Suppose z;,z3 € D(B), y; € Bz and y, € Bzy. By Corollary 1.6,

|B,{'(x1 - M) — Bf(zg - )\yz)l = |z) — 25|

1.16
(@1 = M) — (22 = M)l (116)

<
T 1-Xk

proving (1.13) and
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1
|Bawy — Bywy| = )_\I(B; — Dwy — (Bf — Nwy|

1 1
< XIB:wl - Biws| + j\lwl — wy|

S\ el
2= |

= —|wy — s
AL — k)T

proving (1.12). To show B, and BA” are single-valued, suppose ; — Ay, = = — Ay,. By Corollary
1.6 again, 0 > (1 — Ak)|z; — z2|. Thus z; = z,, and therefore y; = ys.
Now suppose w;, wq are in the domain of B,. Suppose also that

feF(w —w)={fe€X :[w —wp,f] = lwi —wpf* = |f’}. (1.18)
Then
Re[Bywy — Bywn, f] = 3 Rel(Bfw, — w) = (Bfus — ),

1 1
= ;Re[(B;‘wl — Biwy, f] - 3 Relwr —ws, f]

1/ 1 1 , (1.19)
= ;(m)lwl —waf” = STy —wy
k 2
= T el
Hence B, is (k/(1 — Ak))-dissipative. If (z,y) € B,
B\(z - My) =y € Bz = B(B{(z - )) = (B Bf)(z — \y) (120)
proving (1.14). Forw € D(B) N D(By) and each z € Bw,
AByw| = IB:w - w|
= IBfw - B (w- Az)|
1
< Tl - =) (.21
= el
T1-akT
Thus since |Bw| = inf{|z| : z € B w}, (1.15) is proved. O
LEMMA 1.8. Let B be a k-dissipative subset of X x X. If D(B)) = X for some positive
real number A such that 1/\ > |k|, then D(B: ) = X for every positive real number g such that
1 2-Xk
k] < — < . (1.22)
I A

PROOF. First note the following. Since A|k| < 1, the inequality |[k| < 1/A < (2 — A]k|)/A holds.
Also, (1.22) leads to

Y
'“—! <1- k| (1.23)
b

‘Now suppose = € X. For each z € X, define the mapping T by

A p—A
T:=B! (—:r+ £ z). (1.24)
P



GENERALIZED DISSIPATIVENESS IN A BANACH SPACE 29

As aresult of (1.13),

A - A -
ITz-Tuw| = B,f(—:c+#———:) —B;’(—z+”—-w)‘
B B 7 7
1 A b= A A =2
< —z+—z) | —z+—— 1.25
_I—Ak‘( e+ 220) - (22 r 20| (125)
= | ’I..—wl
T 1-)k
Hence T is a Lipschitz mapping with Lipschitz constant
1 |p—2A —-A
= <1 1.26
TTI%| 4 _1—A|k|‘ ' (126)

For n < m and each point z € X,

IT"z—-T™z| < a™|T" ™z —T 2|
<a™(|Tz-2+ |T2z - Tz|+ --)
=a™(l+a+a’+ )Tz~ z|
=a™(1-a) YTz - 2|

(1.27)

Hence, by the completeness of the space X, y = lim,_,,T "z exists in X. Since a Lipschitz map is

continuous
Ty= T( Jim T"z) = lim T(T"2) = lim T™'z=y (1.28)
n—o0 n—oo
Consequently,
A p—A
y=Bf(;x+Ty) B} (y /\( - Jc))) (1.29)

Thus z = (1/p)(y — =) € By and y — pz = z. Therefore B: z = y. Since z was arbitrary,
DB =X. 0O

THEOREM 1.9. Suppose B is a k-dissipative subset of X x X. If D(B}) = X for some

positive number A such that |k| < 1/, then D(B,f ) = X for each positive real number x such that
|kl <1/p.

PROOF. Construct a sequence as follows. Let A;=\. If both i) a positive A, has been chosen
so that |k| < 1/A,, and ii) D(B:) = X for each positive p such that |k| < 1/p < 1/),, thenlet A1,
be the average of A, and A\, /(2 — A\, |k|); that is let Apr1 = A, (3 — A |k])/(4 — 2, ]k|). Then
D(B}) = X for each positive x such that |k| < 1/p < 1/An41.

CLAIM. lim, o A, =0.

The claim holds if k = 0, so suppose k # 0. The claim is now equivalent to saying v, = A,|k|
approaches zero as n increases. Note that 0 < y; = A;|k| < 1 and

3-17, 1/ +, )
=== _ 1.30
7n+1 (4 2'7';) 2(2_7" +7n ( )

Ify, < 1,then 0 < v,,; <7, < 1. Thus (v,) is a strictly decreasing sequence, and as such has a limit
v € [0,1) which is the greatest lower bound of the 7,'s. Suppose ¥ > 0. For each real number z less
than 2, let f(z) = z(3 — z)/(4 — 2z). Then f is a continuous function on (—c0,2). Since f(7) < 7,
thereis a & > 0 such that for v < < y+ 96, f(n) < 7. For n large enough, however, y <7, <vy+6
and v, .; = f(7,) < 7, contradicting the fact that -y is the greatest lower bound of the,'s. Thusy =0,
proving the claim.
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Hence for u a positive number such that |k| < 1/p , there is a positive integer . such that
A <pand D(Bf)=X. O

DEFINITION 1.10. A k-dissipative subset B of X x X will be called k-hyperdissipative if
D(B}) = X for some (, and hence for each,) positive real number X such that |k| < 1/ .

PROPOSITION 1.11. A k-hyperdissipative subset B of X x X is maximally k-hyperdissipative
in the sense that there does not exist a k-dissipative subset C of X x X such that B is a proper subset
of C.

PROOF. Assume some k-dissipative subset C of X x X contains B as a subset, and suppose
(Z0,¥o) € C. Since B is k-hyperdissipative, there exists an element (z,y) of B such that

1

- 1.31
[kl +1 (30

o Yo=7T

- Iklﬁy'
Having B as a subset of C implies (z,y) € C. Applying Corollary 1.6 gives zp = zand yo = y. O
2. CONTINUOUS FAMILIES WITH A BOUNDING FUNCTION

Let a continuous family {T; : t > 0} be a collection of possibly non-linear mappings from X
into X which are strongly continuous in t (i.e. for each z € X, T,z is continuous in t ), and which satisfy
Tox = vz for some positive number «. Finally, suppose that for some continuous function g from the
non-negative real numbers back into themselves,

i) (0) =1,
t —_
i 2= 90)
t10 t
i) [Tz — Tyl < g(t)| — ol for
eacht > 0Oandall z,y in X.

exists, and @.1)

Such a function g will be called a bounding function.
A continuous family {7; : t > 0} with a bounding function g is a contraction semigroup if the
following three conditions are satisfied:

ry=1,
ii) g(t) <1foreacht >0, and
i) ; Tyz = Toyz foreachz € X,
and all non-negative s and ¢ .

(2.2)

Contraction semigroups are discussed by Kato [1], Komura [2], [3], Crandall and Liggett [4],
Yosida [5], Miyadera [5] and many others. One goal of this paper is to show that even without the
properties (2.2), continuous families with a bounding function have many characteristics which parallel
those of contraction semigroups.

The infinitesimal generator A of a continuous family {7 : t > 0} is given by

Tz — T¢
Az = lim 22— 0%

i ; (2.3)

if the limit on the right exists. Let D(A) denote the domain of A.
In this situation, an operator B from a subset of X into X will be called k-dissipative if k is a
real number such that for each z and y in the domain of B,

Re(Bzx— By, z—7y) < klz —y|*. (2.4)

THEOREM 2.1. The infinitesimal generator of a continuous family {T; : ¢ > 0} with a bounding
function g is g’(0)-dissipative.
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PROOF.

1 1
Re<;(Tzz — Toz) — ;(sz - Toy), z— y>
1 1
= Re<z(T:-'C - Tw) - ;(Tox - Toy), z — y>

1 1
= ZR€<TtI - T‘lyv z— y> - ZRe(T‘OI - TOyyz - y)

1 1
< ;Isz—TtyII-'c—yI - ;I‘rz— yllz =yl
g(t) ¥
< Sle =yl - Sl
_g(t) —¢(0) 2

Thus for z and y elements of D(A), taking the limit of the first and last terms as ¢ decreases to zero gives
Re(Az — Ay,z—y) < g'(0)lz—y. O (2.5)

One consequence of Theorem 2.1 is the following.
COROLLARY 2.2. If A is a positive number such that |g’(0)| < 1/, then the operator I — AA
from D(A) into X has a unique inverse.
PROOF. Suppose z; — Az = z = 29 — AAzy. If z; # x9, then
0=((z1 —AAzi) = (z2 — AAx2), 71 — T3)
= |z; — 2> — A(Re(Az) — Axy, 21 — 7o) + Im(Az) — Azy, 21 — T2))
= |21 — 2| — ARe(Az) — Az, ) — 73)
> |21 — z2* = Ag'(0)|z1 — o[
>0.#

Thus z; = z2 and I — X A has a unique inverse. O

3. EXAMPLES.
Finding general solution methods for the nonlinear evolution equation
du(t
% = Au(t) for t >0 with u(0) = (z0,y) € D(A), 3.1

in this setting is an open area for research, but solutions do seem to exist as shown by the following two
examples.

Yosida presents an example given by Komura [2]. This example is now modified to fit the current
circumstances. Let R X R be the Euclidean plane with the usual inner product, let ¢ > 0, and for each
element (z,y) in R X R, let

(max{4z — t,0}, (t +2)%y) if >0,

(4z, (t+2)%y) if £<0. 62

Tl(zv y) = {
Then {T; : t > 0} is a continuous family of non-linear operators from R x R into itself with bounding
function g given for each ¢ > 0 by g(t) = (t + 2)° and y = 4. By definition, the infinitesimal generator
A of {T; : t > 0} is given by

(-1,4y) if >0,

Alz,y) = { 0,4y) if z<0. (3.3)

A solution to the corresponding non-linear evolution equation (3.1) can be found fairly easily if
not systematically. The form of the continuous family could lead one to guess the solution has the form
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2 .
u(t) = (max{a 2,0}, (t+2)°b) ff a>0, G4)
(a, (t+2)°) if a <0.
Since u(0) = (z9, yp), the solution can be pinned down to:
~ 1,0}, Lt +2)%,) if 79> 0,
u(t) = (maXExo 2} 1(E+2)"y) l £ (3.5)
(1‘0, z(t + 2) yo) if x9 <0.
As another example consider the following. Stillin R x R, for t > 0 let
3 .
S,(zy) = {(8z—tz-5t, t+2)°%y) }fy>0, G.6)
(8z — t* — 5t, 8y) if y<O.

then {S; : t > 0} is another continuous family with a bounding function k defined by h(t) = (¢ + 2)°.
In this example v = 8 and the infinitesimal generator B is given by

(-5, 8y) ify>0,

B(z.y) = { (=5,0) ify<0. G.7)

Again, solving the evolution equation (3.1) requires a little guesswork, but due to the characteristics
of the continuous family, one might try a solution of the form

_ 2 _ 3 H
u(t) = { (a t2 5t, (t +2)°b) }f b>0, 3.8)
(a —t* — 5t, 8b) if b<0.
The initial conditions then lead to an actual solution:
_£_5 1 3. i
u(t) = (xo — t* = 5t, g(t+2)"yo) Tf yo > 0, 69
(zo — 2 - 5t, yp) if yp <0.

In both of these examples, knowing how the infinitesimal generator arises is a big help in solving
the equation. For this approach to be very useful, a list of conditions which lead to certain types of
continuous families should be developed. Also, there is the question of whether the solutions are unique.
Both of these topics seem worthy of further investigation.
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