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ABSTRACT. A dual convex programming approach to solving linear programs with inequality con-
straints through entropic perturbation is derived. The amount of perturbation required depends on the
desired accuracy of the optimum. The dual program contains only non-positivity constraints. An &-
optimal solution to the linear program can be obtained effortlessly from the optimal solution of the
dual program. Since cross-entropy minimization subject to linear inequality constraints is a special
case of the perturbed linear program, the duality result becomes readily applicable. Many standard
constrained optimization techniques can be specialized to solve the dual program. Such specializa-
tions, made possible by the simplicity of the constraints, significantly reduce the computational effort
usually incurred by these methods. Immediate applications of the theory developed include an entro-
pic path-following approach to solving linear semi-infinite programs with an infinite number of ine-
quality constraints and the widely used entropy optimization models with linear inequality and/or

equality constraints.
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1. INTRODUCTION.

Since Karmarkar’s projective scaling algorithm was introduced in 1984 [1], various interior-
point methods [2,3] have been proposed to compete with the classical simplex method [4] for linear
programs. Among many new research directions, an unconstrained convex programming approach
was proposed [5], in a framework of geometric programming [6], for solving linear programming
problems in Karmarkar’s form. The approach involves solving an unconstrained convex program-
ming dual problem and converting the dual optimal solution to an e-optimal solution for the linear
program. The work was extended for linear programming problems in standard form [7] with a qua-
dratically convergent global algorithm, based on the curved search methods [8]. This paper further
extends the approach to solve linear programming problems with inequality constraints directly
without a conversion to the standard form. In this way, no artificial variables are added and the
dimensionality of the original problem is kept. In accordance with the earlier work, we derive the
geometric dual, although the same dual program can be derived using the Lagrangian approach.
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The motivation of this study is twofold. First, Fang and Wu [9] recently proposed an entropic
path-following approach to solving linear semi-infinite programs with finitely many variables and
infinitely many inequality constraints. Their algorithms require solving an entropically perturbed
linear program with finitely many inequality constraints. After introducing artificial variables, the
resulting equality-constrained convex program is no longer an entropically perturbed linear program
due to the absence of the entropic terms for the artificial variables. Therefore, the algorithms pro-
posed in [7] is no longer applicable and an algorithm for solving directly the entropically perturbed
linear programs with inequality constraints is needed. Second, the widely applicable entropy optimi-
zation problem with linear inequality constraints turns out to be a special case of the perturbed linear
program being treated. Although such minimization problems subject to equality constraints have
been used widely and treated extensively in recent literature [e.g. 10-16], the inequality case has
received little attention. Nevertheless, the inequality formulation is particularly appealing when point
estimates for the linear moments of the underlying distribution, i.e. the right-hand sides of the equal-
ity formulation, cannot be accurately obtained but the interval (range) estimates for the moments are
available.

In this paper, we extend the geometric programming approach to derive the dual program in
Section 2, discuss other applications of the duality results in Section 3, and conclude the paper in
Section 4.

2. A DUAL APPROACH WITH ENTROPIC PERTURBATION.

Consider the following (primal) linear program:

Program P:  Minimize c¢'x
subject to Ax<b 2.1
x20. 2.2)

where ¢ and x are n-dimensional column vectors, A is an m X n (m < n) matrix, b is an m-
dimensional column vector, and O is the n-dimensional zero column vector.

The linear dual of Program P is given as follows:
Program D:  Maximize bTw
subject to ATw < ¢
w<O0,
where w is an m-dimensional column vector.
Following the approach developed in [5], for any given scalar p > 0, instead of solving Program
P directly, we tackle the following nonlinear program with an entropic perturbation:
Program Pu: Minimize fu(x) =c'x + uilenxj
j=1
subjectto Ax <b 2.3)
x20. (24)

Note that the entropic function xInx is a strictly convex function well-defined on [0, o), with the con-
vention that Oln0 = 0. It has a unique minimum value of —1/e at x = 1/e, where e = 2.718....

Like all interior-point methods, we make an Interior-Point Assumption, namely, Program P has
an interior feasible solution x > 0. Under this assumption, Program P, is feasible for any p > 0.

Moreover, since 0In0 = 0, ¢;x; + xjlnX; — +eo as x; — o, and xjlnx; is strictly convex over its domain
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for cach j, Program P, achicves a finite minimum at 4 unique point x" € R" for cach > 0. More
interestingly, as discussed in [7], if Program P has a bounded feasible domamn (1c¢., the Bounded
Feasible Domain Assumption). then as p — 0 the optimal solution of Program P, approaches an
optimal solution of Program P. To derive the geometric dual of P. consider the following simple
incquality:

Inz<z-1, for />0 2.5)

Note that this inequality becomes an equality if and only 1f z=I.

For any p >0, w, € R (i=1,..m), and x, >0 ( = 1,...,n), we define

[(Xa,w, - ¢)u] -1
e 1=t
zy=———, for j=1l..n
X

In this way, x, > 0 implies z, > 0 and, by inequality (2.5), we have

(Saywiciu] -1
m =1
[(Ta,w,—c)/ul =1 = Inx, < e——;—~— -1, (2.6)
1=1 i

Muluplying both sides by x>0 and rearranging terms lead to

m 1(Ca,wi—c)p] -1
xJ[(}:la,le—cJ)/u] —e ™ < lenxJ .
=

Note that this inequality holds even if x, = 0. Now, multiplying both sides by p and summing over j,

we obtain
n m n Hf)a.,w.—c,)/ul -1 n n
XX | Xagw,| —uXe ™ < Yox, + uYyxlnx .
1=t =l =1 =1 )=l
n
If (i) x, 20 (j = 1,...,n) satisfies Y a;x<b, and (ii) w,<0, for i = 1,2,...,m, then
1=1
n m m n m
XX, Zapwi| = X Xayx,|w, 2 Ybw; . 2.7
=1 L=l i=1{j=1 =1
Therefore, for any x>0 such that Ax < b and w<0,
m n [(ialjwl_cj)/u] -1 n n
Z1biW] - uzle = < ZlcjxJ + |,lzllenxJ . 2.8)
= = = =

Recall that the right-hand side of (2.8) is exactly the objective function of Program P,. We now
define the following geometric dual program D, of P,;:
m n [(iﬂuw-—C,)/ul -1
Program D;:  Maximize d,(w)= Ybw, —pnYe = subject to w <0 .
=1 j=I
Program D, is a convex program with only non-positivity constraints and the sum in each of the
n exponents in the second term of its objective function is simply the amount of violation of the
corresponding constraint in Program D. More importantly, if Program D, attains a finite optimum at
w'(1) for every p>0, then w'(u) approaches a feasible solution of Program D as p approaches 0.
Program D, can also be derived via the Lagrangian approach. Note that this dual program differs
from the one obtained for standard-form linear programs in [7] only in the extra non-positivity
requirements. While it is usually the case and easy to see that, in the Lagrangian max-min deriva-
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tion, a change of sign 1n a primal constraint results 1n a change of range of the corresponding dual
variable, this causal relationship is not apparent in the geometric programming derivation. Our
derivation, in contrast with its counterpart for the equality-constrained program, illustrates the
difference in deriving the geometric dual program between the equality-constrained and the

inequality-constrained cases.

We now turn to establishing the duality theory.

THEOREM 1. (Weuak Duality Theorem) If P, is feasible, then Min(P,) 2 Sup(Dy).
PROOF. Inequality (2.8) implies that f(x) < d,(w) as long as x is primal feasible and w is dual
feasible. The weak duality follows consequently. (J

THEOREM 2. Assume that (i) X" is primal feasible and (ii) w" is dual feasible. If

[(Xa,w.'—c)p] -1

X, =¢ "' , for j=1,..n, and 2.9)

)

n
w,’ [zaux]‘ - b,] =0, for i=1,2,..m, (2.10)
J=1

then x" is an optimal solution to Program P, and w" is an optimal solution to Program D,. More-
over, Min(P,) = Max(D,).

PROOF. Inequality (2.8) becomes an equality if and only if both inequalities (2.6) and (2.7)
become equalities, for each j=1,2,...,n. But, inequality (2.7) becomes an equality if and only if

n
w; [ZaljxJ - b,] =0,i=1,2,..m.
j=1

Recall that inequality (2.5) becomes an equality if and only if z = 1. Hence inequality (2.6) becomes
an equality if and only if

[(Ca,w—cpp] -1
e
7z =—— =1
i}
X

or, equivalently,

=1

[(ia.,W.-cJ)/u] -1
X, =€ .
)
By equations (2.9) and (2.10), inequality (2.7) becomes an equality. By Theorem 1, the feasibility of

x" and w" implies their optimality. O
THEOREM 3. The objective function du(w) of Program Du is concave. If the constraint matrix
A in Program P has full row-rank, then d,(w) is strictly concave.

PROOF. The k;-th element of the gradient vector of the dual objective function dy(w) is

adp,(w) n i(iauw"_cj)/u] -1
=b, ~ e~ Ay, - @11
=1

awkl
Consequently, the (kj,ky)-th element of the Hessian matrix of function d,,(w) is given by

ad (w) 12 [(Xa,wi—cp] -1
P el X0 .
owy oWy, T k)

Therefore, the Hessian matrix can be written as AD,(w)AT, where D.(w) is an n X n diagonal matrix
with rj(w) as its j-th diagonal element and
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I(IZu,,w.-cJ)/ul -1
r(w)=-—e = <0.
By matrix theory, the Hessian matrix is nonsingular and negative definite as long as A has full row-
rank. Therefore, dy,(w) 1s strictly concave if A has full row-rank. O

THEOREM 4. (Strong Duality Theorem) If Program P has an interior feasible solution, then
Program D“ attains a finite maximum and Min(Pu) = Max(Dp). If, in addition, the constraint matrix
A has full row-rank, then Program D, has a unique optimal solution w'(1) < 0. In either case, for-
mula (2.9) provides a dual-to-primal conversion which defines the optimal solution x* (i) of Program
P,

PROOF. Under the Interior-Point Assumption, Program P ( hence P, ) has an interior feasible
solution. From convex analysis ( Fenchel’s Theorem [6,17]), we know that there is no duality gap
between the Programs P, and Dy. Recall that Program P, always achieves a finite optimum as long
as u > 0. Therefore, if A has full row-rank, then Du(w) is strictly concave and Program Du must
also achieve a finite optimum at a unique maximizer w*(n) < 0. Since any w<0 is a regular point for
the non-positivity constraints and d,(w) is continuously differentiable, the Kuhn-Tucker Conditions
hold at w*(p). In other words, there exists a u>0 such that

-Vd,(w'(w) +u' =0, and (2.12)
u'w' () =0. (2.13)
By equation (2.11), equation (2.12) becomes

n [(E}a.,w.'(u)—q)/u] -1
b+ Ye ag+u =0,k=1,2,.m. (2.14)
j=1
If we further define x"() > 0 according to (2.9), then the above equation becomes
AX'(W) <b,
which is simply the primal feasibility. Furthermore, by this definition and equation (2.14), equation
(2.13) becomes

wi () Liaijxj‘(u) - bi} =0.
=1

The desired conclusion follows from Theorem 2. O

So far, we have concentrated on solving Program P, which contains only inequality constraints.
The theory can be easily extended for linear programs with both inequality and equality constraints
in the following form:
Program P:  Minimize ¢"x
subject to  A;x < b;
Azx = b2

x>0,

where ¢ and x are n-dimensional column vectors, A; is an m; X n (m; < n) matrix, A, is an m, X n
(m, < n) matrix, by is an m;-dimensional column vector, b, is an m,-dimensional column vector, and

0 is the n-dimensional zero column vector.

The perturbed problem, Program P;l, is defined by
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n
. . i T
Program P Mmimize  ¢'x + pY x/Inx
)=
subject to A|x < b,

With m=m;+m, and the notation w'=(w/,wJ), where w, is an m;-dimensional column vector and w,
is an m,-dimensional column vector, the geometric dual is defined as
, . m n, 1Camch -1
Program D:  Maximize dy(w)= Ybw, —pYe = subject to w; <0 .
1=1 J=1

With the notation ATE(AT,AJ ), we state the following theorem, whose proof is straightforward in
light of the derivation provided above and treatment of the standard-form linear programs in [7].

THEOREM 5. If Program P has an interior feasible solution, then Program D{,, for every pu>0,
attains a finite maximum and Min(P;l) = Max(D{,). If, in addition, the constraint matrix A has full
row-rank, then Program D;l, for every p>0, has a umique optimal solution w*(i). In either case,
equation (2.9) provides a dual-to-primal conversion which defines the optimal solution x"(it) of Pro-
gram P;l.

As we stated before, if the feasible domain of Program P is bounded, then the optimal solution
of Program P, converges to an optimal solution of Program P, as p reduces to zero. Actually, by
simply modifying a parallel result in [7], we can easily construct an €-optimal solution according to
the following theorem without any difficulty:

THEOREM 6. If Program P’ has an interior feasible solution x > 0 and its feasible domain is
contained in a spheroid centered at the origin with a radius of M > 0, then, for any u > 0 such that

w<e/2nt, (2.15)
where
T=max{ l/e, MInM| }, (2.16)
the optimal solution of Program P;l is an e-optimal solution of Program P’

3. CROSS-ENTROPY MINIMIZATION SUBJECT TO INEQUALITY CONSTRAINTS

The cross-entropy minimization problem has received much attention in the recent literature
[10-16]. However, most of the attention has focused on the case with equality constraints (in addi-
tion to the non-negativity constraints). In fact, a more general setting of linearly-constrained
minimum cross-entropy problem can be described in the following form (assuming p;>0,
j=12,...n):

n X
Program Q :  Minimize Y, x;In (;J)
=1 J

n
subject to Y a X < b ., i=1,2.,m
=
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Although the inequality constraints can be converted into equality ones by adding slack variables, the
resulting program is no longer a regular entropy optimization problem due to the absence of the
entropic terms x,Inx, for the slack variables in the objective function. Therefore, the duality theory
developed in [16] and the algorithms developed in [10] are not applicable. Also note that Program Q
15 a special case of Program P;l with u =1 and ¢, = ~In p.. Therefore, the theory developed in the
previous section applies readily to Program Q. In particular, the geometric dual program of Program
Q can be derived as follows:
n i a, w, -1

m
Program F: max f(w)=3 b w -3 pe” subject to w; <0 .
1=1 =1

In light of Theorem 5, we have the following corollary for the strong duality:

COROLLARY 1. If Program Q has an interior feasible solution and a constraint matrix A of
full rank, then Program F has a unique optimal solution w" and equation (2.9), with c="Inp,, pro-
vides a dual-to-primal conversion which defines the optimal solution x" of Program Q. Moreover,
Min(Q) = Max(F).

4. CONCLUSION

We have extended the unconstrained convex programming approach to solving linear programs
with inequality constraints without adding artificial variables. By the duality theory, one can solve a
given linear program by solving the geometric dual of a perturbed linear program. Many standard
constrained optimization techniques [e.g. 18] can be specialized to solve the dual program D;l. Such
specializations, made possible by the simplicity of the constraints, significantly reduce the computa-
tional effort usually incurred by these methods. For example, the projection operation required by
the projective gradient method is trivial, which makes the method a good candidate solution algo-
rithm.

Immediate applications of the theory developed include an entropic path-following approach to
solving linear semi-infinite programs with an infinite number of inequality constraints and the widely
used entropy optimization models with linear equality and/or inequality constraints.
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