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ABSTRACT. A theorem of Harper for axially symmetric flow past a sphere which is a stream
surface, and is also shear-free, is extended to flow past a doubly-body B consisting of two
unequal, orthogonally intersecting spheres. Several illustrative examples are given. An analogue

of Faxen’s law for a double-body is observed.
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1. INTRODUCTION.

In Stokes’ flow, no-slip circle theorems for two dimensional and sphere theorems for
axisymmetric flows have been proved ([1], [2], [3], [6], [7], [9]). Recently, Harper [5] has proved
the following theorem for axisymmetric flows in which a sphere is a stream surface and is also
shear-free.

THEOREM. If ¢(r,6) is the Stokes’ stream function of an axially symmetric steady slow

viscous flow with no singularities on the sphere r = a, then so is

d’l(ra 0) = ’([)(1‘,0) - (r3/a3) 1/)(02/7',0)
(r,8) being spherical polar coordinates and the fluid motion described by 1, has the sphere r =«
as a shear-free stream surface for which
_ 9 ( -2 %) —
d)l—Oa.ndar " or =0.

The term — (r®/a®) (a%/r,8) is defined to be the image of ¥(r,8) in the sphere r =a. In the
special case when ¥(r,8) = % r2sin?6, the theorem gives
¥y(r,0) = % r2sin?f —% ar sin?f.
This is the stream function for the flow past a shear-free sphere, Rybczynski-Hadamard [4].
In this note, we have proved a theorem which may be considered as an extension of Harper’s

result when the flow is axisymmetric and takes place outside a double-body B, formed by two
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orthogonally intersecting unequal spheres, which is impervious and shear-free.  Several
illustrative examples are given and in each case the drag on the double-body is calculated. A
result which is an analogue of Faxen’s law [4] for a double-body is observed. We also consider a
pair of spherical bubbles intersecting orthogonally and rising steadily in a viscous fluid. The drag
on this system is calculated and compared with Harper’s result for two equal spherical bubbles
touching each other and rising in a viscous fluid.

A theorem for axisymmetric inviscid flow past a double-body has also been proved by the
authors [8].
2. THE DOUBLE-BODY 4.

Consider a double-body B (Fig. 1) formed by two uncqual spheres S, and S}, of radii ’a’ and
b’ intersecting orthogonally, with centres O and O' respectively. In the right-angled triangle
0AO0' ¢ = a® + b? where 00" = ¢. In the meridian plane, join AB to intersect OO’ in D; then
OD = %2, DO' = bc—z, DA=DB= "Tb and D is inverse point of the centres O and O’ with respect to

the spheres S, and S, respectively. Also, we have

2 =71 4+2 cr'cosd + 2, (2.1)
% =12 —2 creosf + ¢?, (2.2)
R2=r2—2%2rcos6‘+‘cl—: (2.3)
=r?42 %2 r'cosh + ﬁ—;. (2.4)
Using (2.1)-(2.4) we have
" =¢R, onr =a, (2-5)
r =§ R, onr =b. (2.6)

3. FORMULATION OF THE PROBLEM.

We consider steady flow of an incompressible viscous fluid past a shear-free double-body B
formed by two unequal spheres of radii ’a’ and ’b’ intersecting orthogonally. Let (r,6,¢), (R,0,¢)
and (r',8',¢) be the spherical polar coordinates of a point P with respect to O,D,0' respectively

(Fig. 1). It is well-known that in a steady, axisymmetric Stokes flow the stream function (r,6)

satisfies
. D% =0 (3.1)
where
2 1-n 52
D?= % + r—zn 60_172’ n= cosf (32&)
=%+% 6% aa—;, w=rgsind, z=r cosl (3.2b)

(w, z,¢) being the cylindrical coordinates of P with respect to O. Since z does not occur explicitly
in the operator D? given by equation (3.2b), it is form invariant under a translation of origin
along the z-axis. We observe that:
(A) Inversion: If y(r,8) is a solution of (3.1), then (r/a)® ¥(a®/r,8) is also a solution.
(B) Reflection: If ¥(w,z) is a solution of (3.1), then ¥(w, — 2) is also a solution.
(C) Translation of origin: If ¥(w,z) is a solution of (3.1), then ¥(w,z + h), where h is a constant,
is also a solution.

We take z-axis as the axis of symmetry, and (w,z), («',2'), (II,Z) as the cylindrical
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coordinates of P with respect to 0.0, D, respectively.

THEOREM. Let ¢y(w.z) be the Stokes stream function for an axisymumetric motion of a
viscous fluid in the unbounded region all of whose singularities being outside the double-body B
formed by two orthogonally intersecting unequal, impervious, shear-free spheres, and suppose
Yolw, 2) = o(r?) at the origin. When the shear-free boundary B is introduced, the stream function

for the fluid external to this boundary is

2
w(w, z) = ofw.z) = (rfaf v (aw “7_;)

r
2.1
(r'/b)? ( 12~C+b7ﬁ)
252 a}(R* - (b*Z/c)
+ (CI“(’/(II))3 Il’o (caz}baz H, (_cm—/-) (33)

The second and third terms on the right hand side of (3.3) are the images of yig(w.z) with respect
to the spheres S, and S, respectively and the last term is the image of

(= /o v (B4 e+ E5)
in the sphere S,.

PROOF. The conditions to be satisfied by the function v given in (3.3) are that

(i)  the perturbation terms in (3.3) viz the 2"¢, 3" and the 4'® terms must be solutions of
(3.1);

(1) $=0= % (7““2 %%), onS,and ¥ =0= 58;7 (r’ 2 g;/,) on S, thus making B a stress-
free stream surface;

(iii) the singularities of the perturbation terms must lie inside the double-body B;

(iv) the perturbation velocity must vanish as r—oo.

By virtue of (A), (B), (C), the perturbation terms in (3.3) are the solutions of (3.1) and
hence condition (i) is satisfied.

It can be shown that the expression given by (3.3) satisfy the boundary conditions on B and
therefore (ii) is satisfied.

Further, if a singularity of yo(w,z2) exists at E outside B, then all the singularities of the
perturbation terms will lie inside B (see the Appendix) and condition (iii) is satisfied.

Finally, since vy(w,z) = o(r?) at the origin, the perturbation terms in (3.3) are at most of
order o(r) for large r. Hence, the perturbation velocity tends to zero as r—oo, and the condition
(iv) is also satisfied.

4. ILLUSTRATIVE EXAMPLES.

(I)  Uniform flow past B

The stream function for the uniform flow along Oz is

Po(r,8) = % Ur?sin?.

When the shear-free double-body @B is introduced in the flow field, then the modified stream
function becomes (Using (3.3))

(r,8) =L Urtsin®0 — L Uar sin®0 - L Ubr'sin6' + LU % R 5?0 (4.1)

Thus the image system of uniform flow at infinity consists of three Stokeslets of strengths
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4rpUa, 47plUb, — 4mpU %b located at 0,0', and D respectively. The drag on the double-body in

this case is found to be
F=drulU(a+b-)k (4.2)

= 41 Lagolo + [baoloy — (42 0] )
where q, represents the velocity of the undisturbed flow and the subscripts outside the square
brackets indicate the evaluation at those points respectively.
Putting b = 0 in (4.2), we get the drag on a single shear-free sphere.
(II). Quadratic flow
In this case

Uo(r,8) = 5100 cosb,

and by applying the theorem we obtain

Y(r,8) = r35in?8 cosd — a*sin®8 cosb — b3sin?8' cosb’
— ber! sin?d’ + # 5?0 cosO®
+ % Rsin?@ (4.3)
The image system consists of a Stokes-doublet at O; a Stokeslet and a Stokes-doublet at O';
a Stokeslet and a Stokes-doublet at D. The drag is given by

3_ .3y
F=87r,ub(ac—26)k

= dmp ( [agol + b0}y — (2 qo]p)- (4.4)
Putting b = 0, the drag on a single shear-free sphere r = a with centre at O is zero, while putting
a=0, F= —8rubec.
(III) Stokeslet outside B
Consider a Stokeslet of strength F;/87p, located at E(0,0, — d) outside B on the axis of

symmetry. The stream function due to the Stokeslet in an unbounded fluid is

Po(r,0) = Si_it r sin’6,.

where (r,,0,,¢) are the polar coordinates of P with E as the origin (Fig. 1). Using the theorem,

we obtain

F. . . .
P(r,0) = 8—1‘% [r,smzel —% rysin’, — (T—ll)-—d) ra8in%0,

- (‘ﬁb_af) r4sin204} (4.5)

where (ry,0,,6) and (r,3,63,¢) are the spherical polar coordinates of P with E, and E, as origin,

which are the inverse points of E with respect to S, and S, respectively and (r,,0,,¢) are the

spherical polar coordinates of P with respect to E,,; the inverse pointFof E, in th(}e'_1 sphere S,
_ T3 b F3 _ ab

oe Soxe 4 & 8ri (ot d) B (a4 od)
located at E,, E, and E,, respectively inside B. The drag on B 1s found to be

The image system consists of three Stokeslets of strengths — -8-”—:1 %,

_ a b ab I
F—Fs(d+(c+d) (a2+cd))k
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= am (ool + Banloy = [ @y ) (46)

(IV) Potential-Doublet outside B
Consider a potential-doublet of strength a located at E(0.0, — d) outside B on the axis of

symmetry. The stream function due to a potential-doublet in an unbounded fluid is

2
sin‘f
U(r.0) = @ = L

Applying the theorem we get

sm* 2 4 ,
P(r.8) = a [ - 1_ ;1(1_3 (r2 -2 % cost, + d—(l'—;;) snf,

__ b L2 b 2
s (13 C+dC0503+(C+d)27‘3> sl

2p?

cry+ 2 cosb,

c
(a® + cd)

ab
T+ cd)3< n
)szn (4 ] (4.7)

(a+d

The image system consists of:

: . a _ b abc?
(i) three Stokeslets of strengths — « e crd® (a +cd)’ located at E,, E,, Ey,;

(ii) three Stokes-doublets of strengths 2a % d"’ (c -I;f’d)vz (aa:{) a7 located at E,, E,, E,;

(iii) three potential-doublets of strengths —a a located at E,, Ey, E;,

_ bs asbs
. & e+ dP @+ cdp
respectively.

The drag in this case is

F=8mua (%* i a—tccd) )’?
= 47 ({agslo + [baol oy~ % 0ol } (49)
In the examples considered, we find that the drag on the double-body is given by
F = s ({agolo + baoly ~ % aolp ) (49)

where [go]g, [go] o [g0]p are the velocity of the undisturbed flow evaluated at 0,0'.D
respectively. If we put b =0 in (4.9), we get the drag formula for a single shear-free sphere of
radius ’a’. This result is an analogue of Faxen’s law [4] for a double-body.

5.  APPLICATION TO RISING BUBBLES.

We consider two equal spherical bubbles intersecting orthogonally and rising steadily with a
velocity U in a viscous fluid. The stream function for the motion of this double-body is obtained
from (4.1) by taking a = b. This gives

r.6) -3 Ua{r sin? + r'sin6’ — % R sin’® (5.1)

The drag on the double-body is
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F=5172rulUa k (5.2)

The total drag for two cqual bubbles touching each other and rising in a viscous fluid is given by,
Harper (1983)
F=554mula k (5.3)

Hence, the drag on the double-body is less than that of the total drag ou touching bubbles, when

they are rising in a viscous fluid which is at rest, otherwise.

APPENDIX

As E (Fig. 1) moves from z = —oo to E', the inverse point of E with respect to S,, namely
E, moves from O to E'; also the inverse point of E with respect to S, namely E, moves from O’
to F. Now the inverse point of E, with respect to S,, namely E,, lies on the segment DF.

Therefore, the singularities of the perturbation terms in (3.3) lie inside .

P(xy,z)

Z-axis

FIGURE 1. THE DOUBLE BODY B
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