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ABSTRACT. Wang et al. [11] proved some fixed point theorems on expansion mappings, which

correspond some contractive mappings. Recently, several authors generalized their results by some
ways.

In this paper, we give some fixed point theorems for expansion mappings, which improve the
results of some authors.
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1. INTRODUCTION.

Rhoades [8] summarized contractive mappings of some types and discussed on fixed points.
Wang et al. [11] proved some fixed point theorems on expansion mappings, which correspond
to some contractive mappings in [8]. Recently, by using functions, Khan et al. [5] generalized
the results of [11], and Park and Rhoades [7] proved some fixed point theorems for expansion
mappings. Also, Rhoades [9] and Taniguchi [10] generalized the results of [11] for pairs of mappings.
Furthermore, Kang [3] and Kang and Rhoades [4] extend the results obtained by Khan et al. [5],
Rhoades [9] and Taniguchi [10].

In this paper, we give some fixed point theorems for expansion mappings, which improve the
results of Kang [3], Khan et al. [5], Rhoades [9] and Taniguchi [10].

2. THE MAIN THEOREMS.

Throughout this paper, following Boyd and Wong [1], let F be the family of mappings such that
for each ¢ € F, ¢ : [0,00) — [0,00) is upper semi-continuous from the right and non-decreasing
in each coordinate variable with ¢(t) < t for all ¢t > 0.

We also need the following Lemma due to Matkoski [6] in the proof of our main theorems.
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LEMMA. If ¢(t) <t for everyt > 0, then nliln @"(t) =0, where ¢™(t) denotes the composition
of ¢(t) with n-times.

Now, we prove some common fixed point theorems.

THEOREM 2.1. Let S and T be mappings from a metric space (X,d) into itself such that
S(X)C S%X), S(X) S TS(X) and S(X) 1s complete. Suppose that there exists ¢ € F such that
for each z,y in X, at least one of the following conditions holds:

$(d(S?z,TSy)) > d(Sz, Sy). 2.1)
¢(d(S%z,TSy)) > %[d(S:c, Sy) + d(T Sy, Sy)]. (2.2)
6(d(S%z,TSy)) > ~[d(Sz, S*<) + d(Sa, Sy)). (2.3)
8(d(5%2,TSy)) 2 3{d(Sz,5%) + d(TSy, 5y) + d(Sz, 5v)] (2.4)

Then either S or T has a fized point, or S and T have a common fized point.

PROOF. Let z¢ be an arbitrary point X. Since S(X) C $?(X) and S(X) C TS(X), we have
for 'zq € X, there exists a point z; in X such that $?z; = Sz¢ = yo, say, and for this point
z1, there exists a point z3 in X such that TSz, = Sz; = y, say. Inductively, we can define a
sequence {yn} in S(X) such that

2
S°Z2n41 = ST2n =y2n and TSzyny2 = STony1 = Yanta-

It is easy to show that, for each of the inequalities (2.1)~(2.4), that we have ¢(d(y2,., yg,,.,.l)) >

d(y2n+1,Y2n+2). Then one can show that ¢(d(y2n+1,Y2n+2)) > d(y2n+2, Y2n+3), hence for arbitrary
n’

3(d(Yn, Yn+1)) = d(Ynt1, Ynt2)-

Now, if Y2, = y2n41 for any n, one has that ys, is a fixed point of S from the definition {y,}.
It then follows that, also, y2n41 = Y2n+2, Which implies that {y,,} is also a fixed point of T
For an arbitrary n, we have

d(ymyn+l) < ¢(d(yn—l,yn)) <L 9" (d(yo, y1))~

By Lemma, ,.111330 d(Yn,Ynt1) = 0.

Now, using the technique of Kang [4], one would prove that {y,} a Cauchy sequence and it
converges to some point y in S(X.). Consequently, the subsequences {y2n}, {y2n+1} and {yan+2}
converge to y. Let y = S?u and y = T'Sv for some u and v in X, respectively. From inequalities
(2.1)~(2.4), it follows that at least one of the following inequalities must be true for an infinite
number of values of n:

¢(d(y2n,y)) > d(Sz2n41,Sv)

#(d(y2n,y)) > %[d(sz,.H, Sv) + d(TSv, Sv))
¢(d(y2m y)) 2 %[d(522n+1,521'2n+1) + d(Sz3n41,5v)]

1
#(d(y2n,y)) 2 g[d(sx2n+la S2Zon41) + d(TSv, Sv) + d(ST2p41, Sv)]
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Taking the limit as n — oo in each case yields y = Sv. A similar argument applies to proving
that y = Su. Therefore, y is a common fixed point of S and T. This completes the proof.

THEOREM 2.2. Let S and T be continuous mappings from a metric space (X,d) into itself
such that S(X) C S*(X), S(X) C TS(X) and S(X) is complete. Suppose that there exists ¢ € F
such that

¢(d(S%z,TSy)) > min{d(Sz, S*z),d(T Sy, Sy), d(Sz, Sy)} (2.5)

forallz,y in X.
Then S or T has a fized point or S and T have a common fized point.

PROOF. Define a sequence {y,} as in Theorem 2.1. If y,, = yp4; for any n, then S or T has a
fixed point.
It is easy to show that, for each of the inequality (2.5), that we have ¢(d(yg,,,yg,.+1)) >

d(y2n+1,Y2n+2). Then one can show that ¢(d(y2n+1,y2n+2)) = d(Y2n+2, Y2n+3), hence for arbitrary
n’

¢(d(ym yn+1)) 2 d(Yn+1>Yn+2)-

For any m < n,

d(YmsYn) < d(Ym, Ym+1) + d(Ym+1,Yn)
L d(YmrYm+1) + AYm+1,Yma2) + -+ d(Yn—1,Yn)
< ¢™(d(yo,y1)) + - + 6" (d(yo, 11))-

Hence, it follows that {y,} is a Cauchy sequence and it converges to some point y in S(X).
Consequently, {y2n}, {y2n+1} and {yan+2} converge to y. By the continuity of S and T,

S2Z2n41 = SY2n41 = Y2n = Sy and TSZiny2 = TY2n+2 = y2nt1 — Ty asn — co.

Thus, S and T have a common fixed point.

COROLLARY 2.3. (1) Let S and T be mappings from a metric space (X, d) into itself such that
S(X) € S%(X), S(X) C TS(X) and S(X) is complete. Suppose that there ezists real numbers
h > 1 such that for each z,y in X, at least one of the following conditions holds:

d(S%z, TSy) > hd(Sz, Sy).

d(S%2,TSy) > 21d(Sz,Sy) +d(TSy, 5y)].

d(S%2, TSy) > g[d(Sz, $%2) + d(Sz, Sy)).

d(S%z, TSy) > {d(Sz, Sc) + d(TSy, Sy) + d(Sz, Sy)].

Then either S or T has a fized point, or S and T have a common fized point.
(2) Let S and T be continuous mappings from a metric space (X, d) into itself such that S(X) C
S%(X), S(X) C TS(X) and S(X) is complete. Suppose that there ezists h > 1 such that

d(S%z,TSy) > hmin{d(Sz, S*z),d(TSy, Sy),d(Sz, Sy)}

for all z,y in X.
Then S or T has a fized point or S and T have a common fized point.
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PROOF. For ¢ € F, we define ¢ : [0,00) — [0, 00) by ¢(t) = %(t), where h > 1. From Theorem
2.1 and 2.2, we obtain (1) and (2), respectively.

THEOREM 2.4. Let S and T be mappings from a metric space (X,d) into itself such that
S(X) C S¥X), S(X) C TS(X) and S(X) is complete. Suppose that there ezists non-negative
real numbers a <1, 8 <1 aend v (e + 3+ > 1) such that

d(S%z,TSy) > ad(Sz, S*z) + Bd(T Sy, Sy) + vd(Sz, Sy)

for all z,y in X.
Then S and T have a common fized point.

PROOF. Define a sequence {y,} as in Theorem 2.1. Suppose that y;, = Yan41 for some n.
Then
d(Y2n, Y2n+1) = d(521'2n+1,T51‘2n+2)

> 0 d(STan41, 5 T2n41) + BA(TST2n42, STont2)
+7d(ST2n41,5T2n42)
= ad(Y2n, Y2n+1) + Bd(Y2n+1,Y2n42) + ¥ d(Y2n+1, Y2n42)s

that is, d(y2a, Y2n+1) > (%})d(yznﬂ,yznn), which says that ysn41 = yan42 since S+ 7 # 0.
Thus, y2, is a common fixed point of S and T. Similarly, yan+1 = Y2n+2 gives that yzn4q is a
common fixed point of S and T.
Now, suppose that y, # yn41 for each n. Then
d(y2n,Y2n+1) = d(S*22041, TST20+2)

> ad(yan, Yan+1) + Bd(Y2nt1,Y2n+2) + 7 (Y2041, Y2n+2)-
Thus, we have
l-a
d(Y2n+1, Y2n+2) < P1d(Y2n, Y2n+1), Where py = m <1l

Similarly, we have

1—
d(Y2n+2,Y2n+3) < P2d(Y2n+1,Y2n+2), Where p = ﬁ% <1

Putting p = max{p1,p2}, we have

d(yn, yn+l) <p d(yn—l ) yn)'

Since p < 1, by Lemma of Jungck [2], {yn} is a Cauchy sequence and it converges to some point y
in S(X). Consequently, the subsequences {y2n}, {y2n+1} and {yzn+2} converge to y. Let y = S%u
and y = T'Sv for some u and v in X, respectively. Then

d(y2n,¥) = d(5*T2n41, TSV).

Taking the limit as n — oo, we have 0 > (8 + ¥)d(y, Sv), so that y = Sv. Similarly, y = Su.
Therefore, S and T have a common fixed point.

REMARK. Our results improve several results of Kang [3], Khan et al. [5], Rhoades [9] and
Taniguchi [10]. Furthermore, we have used non-surjective mappings.
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