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1. INTRODUCTION.

In 1929, Kolmogorov proved a law of the iterated logarithm (LIL) for independent random
variables under certain boundedness conditions. Hartman and Winter in 1941 verified that the
LIL is universally true for i.i.d. random variables when the second moment exists. There are
certain extensions of the LIL to martingales. However, there appears to have been no discussions
on this problem for exchangeable random variables. We address this problem in this paper and
extend the LIL to exchangeable random variables with necessary and sufficient conditions for the
LIL in terms of conditional mean and variance.

Random variables (r.v.’s) X, - - -, X, are said to be exchangeable if the joint distribution of
Xy, - - -, X, is permutation invariant. A sequence of r.v.’s {X,} is said to be exchangeable if
every finite subset of the sequence is exchangeable. Obviously, i.i.d. random variables are
exchangeable, but not vice versa. The LIL is said to hold for a sequence of r.v.’s {X,} with
EX, =0for all nif

pops

1=1 =1]=1

P | limsup =1

where §2 = i EX? and log denote the natural log to the base e. The following example shows

=1
that the LIL can fail even for exchangeable r.v.’s while a sequence of exchangeable r.v.’s may
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satisfy the LIL and not be independent r.v.'s.

EXAMPLE 1. Let {X,,n > 1} be a sequence of i.i.d. random variables such that FX, =0
and EX?=1 and let Y, =ZX,, n>1, where the random variable Z is independent of the
sequence {X,,n>1} with P(Z=a)=P(Z=50)=05. It is not difficult to see that {Y } is a
sequence of exchangeable r.v.’s.

Ifa=2and b=0, then EY, =0 and EY? =2 for every n > 1. We define S% = }n: EY? and
U? =2 loglog S%. Clearly, l

n n
XY X,

. ] . 1 S
P\ limsup S,,Un_l =0.5P hmsup——_Wlog_n_\/i 0 (1.1)

—00 n—oo

in view of the fact that by [4], n n
§1:XJ 21:( -X,)
li —_—— i = S.
D e Toglogn P i Toglog 10 &S

In this case, the LIL is almost nowhere true for the sequence of exchangeable random variables

(1.2)

{Y',} versus the LIL holding for the sequence of i.i.d. random variables {X,}.
However, if a=1 and b= —1, then EY2 =1, $% =n, and U? =2 loglog n, which yields
from (1.2)

n
P (limsup N Y,/S.U, = 1>

n—oo ]

n
=05 P (limsup )" X,/v2nloglogn = 1)

—00 1

n

+ 0.5P(Iimsup ) (- X;)/V2nToglog n = 1) =1 (1.3)
n—oo 1

This is another case where the LIL holds for exchangeable r.v.’s{Y, , n>1} which might

definitely not be a sequence of independent r.v.’s as long as

P(X,<a)P(X,<b)+ P(X,> —a)P(X;> —b)
# P(X, <a)P(X, > —a)+ P(X, <b)P(X, > —b).

A similar example can be constructed to show that under certain conditions the LIL holds
for martingales but fails for exchangeable r.v.’s and vice versa. Thus, conditions for the LIL to
hold may be very different for exchangeable r.v.’s than for independent r.v.’s or martingales.

Necessary and sufficient conditions for the LIL to hold for exchangeable r.v.’s are established
in the next section.

2. THE LIL FOR EXCHANGEABLE r.v.’s.

Below we establish the LIL and give the necessary and sufficient conditions for exchangeable
r.v.’s to satisfy the LIL by using de Finetti’s theorem. Let ® denote the collection of distribution
functions on R (real numbers) and provide ® with topology of weak convergence of distribution
functions. Then, de Finetti’s theorem [2] asserts that for an infinite sequence of exchangeable

r.v.’s {X,} there exists a probability measure p on the Borel o-field ¥ of subsets of ® such that
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P{g(X,, - -+, X,) € B} = [Pr { glXy, - -, X,] € B} du(F) (14)
®
for any B€® and any Borel function ¢g: R"—R,n>1. Moreover, Pglg(X,, - -,X,) € B] is

computed under the assumption that the sequence of r.v.’s {X,} is ii.d. with common
distribution function F, where Epg(X,) is the conditional mean obtained by integrating g(z)
with respect to P () given by (1.4).

From (1.4), we know that if {X,} is a sequence of exchangeable r.v.’s on (2, A, P), then
{Erg(X,)} is a sequence of random variables on (®,Z,u) and for each F € ® given, {X,} are
independent, identically distributed.

Taylor and Hu (1987) showed that for a sequence of exchangeable r.v.’s {X,} such that
Ep|X,| <oop—as.

n
ErX, =0 p—as. if and only if% E X;—0 as.
k=1
Moreover, it was observed that EpX; = 0 p-a.s. is equivalent to F(X;,X,) =0. Blum, Chernoff,
Rosenblatt, and Teicher (1958) showed that for a sequence of exchangeable r.v.’s {X,} such that
EX!< oo
n
L )" X, converged in distribution to a N(0,0?) r.v.

VS
if and only if
EpX, =0 p-as. and EpX? = 0? p-ass. (1.5)
which is equivalent to the alternative and structurally simpler condition EX,X,=0 and
EXIX?=1.
The necessary and sufficient conditions for the LIL to hold for exchangeable random

variables are patterned after these results.
THEOREM 1. Let {X,,n>1} be a sequence of exchangeable r.v.’s with EX, =0 and
0< EX?=0?<co. Then

limsup Xn: X, / V2nloglogn =o0,as., (1.6)
if and only if e
vp=EpX,=0and 0% = Ex(X, —vp)’ =0, p-as. (1.7
COMMENT. Condition (1.7) is equivalent to EX;X, =0 and EX?X3=1.

PROOF. First, observe that (1.6) is equivalent to

0, ifc>1

n
P X,/ V2nToglogn > ca,io. ={ ) (1.8)
1 1, ifc<1

Next, from (1.4) and by the continuity of probability measure and the bounded convergence

theorem,

p[i‘; X, | JEToglogw zca,i.o.] (19)
1

= lim_lim p[ U (i X, | /o Toglogn 2ca>:|

—00 M—00
n=k
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m n
= lim lim_ [Ps [nuk(zljx,/m an)]d;t(F)

k—o00 m—oo0

¢

m /n
“im lim Pp[ U ( > X,/ V2nloglogn > ca)] du(F)
oo mTe n=k\1

¢

[Pe ( ﬁl'jx, | VZrToglog 7 > co, i.o.) du(F)
)

= IPF {i (X,=vFp) | V2nloglogn >co—/n/(2 loglog n) vp,i.o. }dy(F).

®
Then, we conclude from (1.8) and (1.9) that (1.6) is equivalent to (1.10) and (1.11) where

Pr {i (X,—=vF) [ V2nTloglogn > co—/n/(2 loglog n) up,i.o.} (1.10)

1
=0, p-as., for any ¢ > 1.

and

P {ill: (X,=vF) | V2nTloglogn > co—/n/(2 loglog n) vp,i.o. } (1.11)

=1, p-as., for any ¢ < 1.
Clearly, the “if” part follows easily from (1.10)-(1.11) since {X,~vg,n > 1} are conditionally

i.i.d. with zero mean given F, which leads to

P, [? (X;—vp) | VI Toglogn > cop, i.o.] (1.12)

0 f >1
{ orany e , foreach Fe®,

1for any c <1

when 0 < 0p < oo by the LIL. The above with vp =0 and o = o, p-a.s., confirms (1.10) and
(1.11) and hence establishes (1.6).

To prove the “only if” part, we first compare (1.10) with (1.12) to assert vy <0, p-as..
Otherwise, if p(F:vg > 0) > 0, there exists a € > 0 such that

W(E)>0, E={F:vp>¢€} (1.13)

and on the set E, for all sufficiently large n

co —/n/(2 loglog n) vp < —20p. (1.14)

Hence from (1.12),

Pp l:? (X,—vg) [ V2nloglogn > co—/n/(2 loglog n) up,i.o‘] (1.15)

n
2 Pp [21: (X;—vp) | V2nloglogn > —20p, i.o.]

==1, forany ¢ >1and FE€E.
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It should be mentioned that although (1.15) is deduced under the assumption that 0 < op < oo,
(1.15) is still true when oz =0 as a trivial case and o = 0o is excluded from consideration in
view of the fact that Eok < E EpX?=0? < 0o. The contradiction of (1.15) to (1.10) makes the
assertion vp < 0,p-a.s.. A similar argument from (1.11) and (1.12) concludes vg > 0, p-a.s., thus,

vp =0, p-a.s., has been confirmed. With this, we can reduce (1.10) and (1.11) to

n
PF{Z (X,—vp) | v2n'loglogn >co, i.o. } (1.16)
1
{0 for any ¢ > 1
= , p-a.s.,
1 for any c <1

A comparison of (1.12) with (1.16) yields o = o, u a.s., to complete the proof of Theorem 1. O

We remark that the conditions of Theorem 1 are satisfied of @ =1 and b =1, but are not
satisfied if a =2 and b = 0.

EXAMPLE 2. Let X be a random variable with EX =0 and 0 < EX? < o0, and let
X, =X,n>1. Then (1.7) and (1.6) clearly fail for the exchangeable sequence {X,,n > 1}.

For a sequence of random variables {X,,n>1}, let T be the tail o-field defined by
T= ﬁla(XJ:j >n) and let

n
T =limsup Y X,/ /2nloglog n. (1.17)
n—oo ] =1

When {X,,n>1} is a sequence of i.i.d. r.v.’s such that EX, =0 and EX}=0?% T is almost
surely equal to the constant 0. Theorem 1 also yields T = o a.s. if condition (1.6) holds for
exchangeable random variables, and the example in Section 1 shows that Theorem 1 may be
obtained for non-independent random variables. It is also worth observing that for exchangeable

-1/2 & .
/ ]§1XJ to converge in

i X, to converge in distribution to a
1=1

mixture of normal distributed r.v.’s (cf: Chapter 2 of Taylor, Daffer, and Patterson). For
example, if {X,, n>1} is a sequence of exchangeable r.v.’s with EX; =0, EX? <oo, and

E(X,,X,) =0 (equivalently vp = 0 p-a.s.), then n-1/2jzi:1XJ converges in distribution to a r.v.

Z which has distribution function F! (x):of(b(a”z)dG(a) where @ is the standard normal

distribution function and G is a distribution function with support contained in [0,00). Theorem

r.v.’s condition (1.7) is the necessary and sufficient condition for n

distribution to a N(0,0?) r.v. It is possible for n=1/2

2 provides a LIL for this setting.
THEOREM 2. If {X,, n>1} is a sequence of exchangeable r.v.’s with EX? < oo, then in
(1.17) T is an extended random variable which can be defined by

00 on {E(X,|T} >0}

VE(XTIT) on {E(X,,|T) =0} (118)

— oo on {E(X,|T) <0}

T

REMARK. Traditionally, hypotheses of limit theorems for exchangeable random variables
are phrased in terms of vp = Ep(X,) and 0% = Ep(X?) — v} which are random variables on the
probability space (®,Z,p). It can be shown that g(w)=P(X, <t|T)(w) is a measurable
mapping of (22, A) into (®,X) and p can be identified with the induced probability measure P,
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where T is any o-field which make the exchangeable r.v.’s {X,,n > 1} conditionally i.i.d. (e.g., T
could be the tail o-field). Hence, T can be identified with T, a r.v. on (®,Z, i) defined by

oo on {F:vp>0}
Tg= op on{F:vp=0}. (1.19)

—o0o on {F:op <0}

and the proof of Theorem 2 follows from the proof of Theorem 1. Note that T =Tf og as.
where o denotes the composition mapping.

PROOF OF THEOREM 2. Since EX? < 0o, vp, and 0% exist for g - almost every F € ®.
From (1.12) if follows that

n
Pr [umsup S5 (X, —vr) | VIR Toglogm n=ap]= 1

n—oo ].—:1

for p - almost every F € . The proof then follows by observing that

n—oo

n
Tr= Iimsup{ > (X,-vp) | V2nloglogn + 1/n/(2 loglog n) VF}
j=1

completing the proof. O
From the proof of Theorem 2, it is clear that the hypothesis EX? < oo can be replaced with
EpX?<oop-as.
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