
Internat. 3. Math. & Math. Sci.

VOL. 17 NO. (1994) 65-72
65

A RESULT OF COMMUTATIVITY OF RINGS

VISHNU GUPTA

Department of Mathematics
M.D. University, P.G. Regional Centre

Rewari (Haryana) INDIA

(Received December 11, 1990 and in revised form September 9, 1991)

Abstract. In this paper we prove the following:

THEOREM. Lt n > and m be fixed relatively prime positive integers and k is any non-negative

integer. If R is a ring with unity satisfying x[x",y] [x,y’] for all x, y ER then R is commutative.
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1. INTRODUCTION.

Psomopouios [12] proved that ifR is a ring with unity satisfying the properties that for each x, y

(i)

(ii) (xy )" x"y"

(iii) (xy)*

where n > and m are fixed relatively prime positive integers and k is any non-negative integer, then R is

commutative. In this paper we prove the theorem stated in the abstract which improve above theorem of

Psomopolous [12] where conditions (ii) and (iii) are superfluous.
Throughout, R will denote an associative ring with unit 1. We use the following notations.

Z(R ), the center of R.

[x,y xy yx

C(R), the commutator ideal of R.
N(R), the set of all nilpotent elements of R.
D(R), the set of all zero divisors in R.

2. MAIN RFULTS.
We state our main result as follows.

MAIN THEOREM. Let n > and m be fixed relatively prime positive integers and k is any non-

negative integer. IfR is a ring with unity satisfying

(*) x*[x", y Ix, y’] for all x,y ER
then R is commutative.

We begin with the following lemmas which will be used in proving our main theorem.
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LEMMA1 ([2], Theorem 1). LetR be a ring satisfying an identityq(X) O, whereq(X) is a polynomial

identity in non-commuting in-determinates, its coefficient being integers with highest common factor one.
If there exists no primep for which the ring of 2 x 2 matrices over GF(p) satisfies q(X) 0, then R has a

nil commutator ideal and the nilpotent elements ofR form an ideal.

LEMMA 2 ([8], p. 221). Ifx,y R and Ix,y] commute with x., then [x’,y]- nx"-t[x,y] for all

positive integer n.

LEMMA3 ([9]). Let R be a ring with unity and let f: R R be a function such that f(x / 1)

for all x R. If for some positive integer n, x"f(x) 0 for all x in R, then necessarily f(x) 0.

LEMMA 4. IfR is a ring satisfying (*) in the hypothesis of the main theorem then

C(R)N(R)C_Z(R)

PROOF. By Lemma 3 of [12] we have N(R)CZ(R) when R satisfies x[x’,y]-[x,y"] for all

x,y ER. This is a polynomial identity with coprime integral coefficients. But if we consider (i)x -e,
and y e2, if n > 1, m 1 and (ii) x e2 and y ezz if n 1 and m 1, we find that no ring of 2 2
matrices over GF(p),p a prime, satisfies this identity. Hence by Lemma 1, C(R) is a nil ideal and thus

C(R C_N(R C_Z(R

PROOF OF MAIN THEOREM. By Lemma 4, we have

c(R) _V(R)___Z(R)
Thus all commutators are central. Moreover, we know thatR is isomorphic to a subdirect sum ofsubdirectly
irreducible ringsR each ofwhich a homomorphic image ofR satisfies the hypotheses of the theorem. Thus
we can assume that R is subdirectly irreducible ring. Hence/, the intersection of all non-zero ideals is

non-zero.

CASE 1. Let n 1 and m 1.

By using Lemma 2, we write (*) as

nx" / [x,y [x,y=]

Let c 2" / 2 0, then

for all x,y R. (2.1)

ncx" " ’[x,y] n {2" /’x" /’ ’[x,y] " "-’[x,

n 2" "x" " ’[x,y 2nx" " [x,y

n(2xJ’ /-[2x,y]- 2[x,y ]

[2x,y’]- 2[x,y’] O

Hence ncx" /-[x,y] 0 for all x,y R. Now replace x by x + 1 and by using Lemma 3, we get

nc[x,y] O

All cummutators are central and hence by Lemma 2

[x,y] ncx [x,y O

Thusx .Z(R) for allx R. We replacey by y" in (2.1) to get

nx’/t-l[x,y’].[x,(y’)’]

(2.2)

(2.3)

(2.4)
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Thus

and

nx" /’ [x,y"] n[x, y,,,]x /, -1

nmy" -[x,yIx" "‘
nmy x" [x,y

my" [x,y’’]

Ix, 0,")" m(y")"-’[x,y"] my’-’y"-’)[x,y"].

Thus by using (2.5) and (2.6), we can write (2.4) as

my" -[x,y"] my" -y0,, )2[x y,,,]

my’-(1_y--) [x,y’]- o
Hence

We claim that

Let a D(R) then

By (2.7), we get

Thus

If ma" [x,a’] , O, then

my’-’(1-y’"’"3[x,y’]-O.

D(R)C.Z(R)

a’"-f.Z(R)IqD(R) and la’"-tf-O.

ma" (1 a,t,,, ,) [x, a’] O

(1 -a"C"-’3ma"-’[x,a"]-O

1 -a’’O’-If D(R)

Hence I(1 a’’" if). 0 and I 0. This is contradiction. Now we have

ma" l[x, a’] O

Thus

n2x,, /, Xx,, /t, [x,a nx,, /, [x, a,,,]

-[x,(a’)’]

-m(a")’-’[x,a"]

.aO,,-fma,,-[x,a,,,].O
Replacing x by x + in (2.10) and using Lemma 3 we get

n[x,a]-O
By using Lemma 2, we can write (*) as

x’[x",y my" a[x, y
Let d 2" 2 > 0. Then

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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mdy" l[x, y m 2"y" i[x, y 2y" [x,y

m(2y’-[x,2y]- 2my"-t[x,y]

x[x",Ey] 2x[x",y]

X’[xn,2y] --X’[X",2y] O. (2.13)

Hence mdy"-[x,y]-O for allx,y 6R. Now replacingy by y + and by using Lemma 3, we get

md[x,y]-O (2.14)
All commutators are central and hence by Lemma 2

[x,y"a] mdy"a [x,y O

Thus y,a Z(R) for all y R. Now replacing x by x" in (2.12), we get

x’[(x’)’,y my" l[x’,y (2.15)
Thus

x’[(x" ",y] x’n(x" Ix’,y

nx’x" Ix(" D[x’,y
r., .t Ix,a -txO, l)[x,, y

nx"’"-’x" ’x’ :[x’,y
nx" /’- ix’- ’)" /’ ’)Ix’, y (2.16)

my’-[x",y] m[x",y]y’’-1

mnx" l[x, y]y -1

mnx" y" [x, y

_nx"-lmy’n-l[x,y]

nx" x[x’,y

nx" /-[x’,y]
Thus by using (2.16) and (2.17) we can write (2.15) as

,=" / b" ""-"[x’,y " [x’,y

nx" /-1(1 -x0’ -)o, /-1))ix- y]. 0.

Hence by using (2.18) we get,

nx" /-( -x’-"/-)[x’,y] o.
Since a fED(R), we have

a’’a’-1)’/’-1 fF_.Z(R)CID(R) and la’"-)’’’-l)-O.

By (2.19) we get

This can be written as

If ha" +k-1[a",y] , 0. Then

na
+, 1(1 a’’n " +’ 1)) [an, y]. O

(I -a"atn -)0, /i-))na /-1[an,y 0.

(2.17)

(2.18)

(2.19)

(2.20)
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1 -a" x" /*- I D(R)

and I(1 a"a’ x)( /t )) 0 and hence I 0, which is a contradiction. Thus we have

ha" /t-l[a’,y]- 0. (2.21)
Now

m2y’-y" -[a,y] my’-[a,y]my"- at[a’,y]my"-

army" -Z[a’,y] ata’t[(a’)",y]

a’t/tn(a’) -[a’,y] a’t/tna" -Za" -z’[a’, y]
a’aa’-lna" / -t[a’,y] 0. (2.22)

Replacing y by y + 1 in (2.22) and using Lemma 3, we get

m[a,y]-0 for all yR.

Replacing y by x, we get

m[x,a]- 0 for all x R. (2.23)

Butm andn are relatively prime. Hence there exists integers ct and such thatmx + n 1. Multiplying

(2.11) by and (2.23) by and adding, we get

Ix,a]- 0 for all

Hence a Z(R), which proves our claim.

We know that x and x EZ(R). Thus

(-’"-[x,y] nx"’’-’Ix,y]-x’x ’’-[x,y]

nx" " [x,xy] x"[x,y"]

,,x. . ’[,x’y:l [x, (x’y)"]

nx" "-[x,x"y]- nx" /-X[x,x’y] O.

Thus(x-x )nx" /-x’-[x,y] O, i.e.

n(x -x)x’[x,y]-O for all x,y R (2.24)

where ncm nc + 1 > 1 and p n + k, + nc 2.

We know that y-a and y,a _Z(R). Thus

0,’a y"’)my" X[x,y] my’ay’-[x,y] my’y l[x,y]

my’-[xy,y] y’x[x’,y]

my" [xy,y] x[(xy’)’,y]

my" [xy,y] my= [xy,y] O

Thus m(y-y’-/)y-y=-[x,y]-O. That is m(y-y")y[x,y]-O for all x,y.R, where

mdn -md + I > I and q md +m 2. Interchanging x and y, we get

m(x-x")x[x,y]-O forall x,y .R (2.25)

We know that (m, n) I. Hence there exists integers a and 5 such that mct + n I. Multiplying

(2.24) by x -x")x and multiplying (2.25) by x -x’)x’ and adding, we get

(x-x’)(x-x’)x’/[x,y]=O forail x,y .R
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This can be written as

(x-x2h(x))x’/’/[x,y]-O forall x,y R (2.26)

where h (x) is a polynomial in x with integers coefficients.

Suppose R is not cummutative. Then by a well known result of Hetstein [6], there exists x R such

that x x2h (x) qZ(R). From this it is clear that x Z(R). Hence x and x x2h(x) is not a zero divisor.

Hence (x -x2h(x))xp /q/t is also not a Zero divisor. Thus

Ix,y] 0 for all y R (2.27)
This gives a contradiction. Hence R is commutative.

CASE 2: Let n > and m I. Then (*) can be written as

x[x’,y]=[x,y] (2.28)

Let e 2 2 > 0. Then

e[x,y 2 /’[x,y 2[x,y

2t /"x’[x",y [2x,y

(2x)t [(2x,y] [2x,y]

[2x,y]-[2x,y]- o.
All commutators are central and hence by l.emma 2,

[x’,y]=ex’-[x,y]-O forali x,y .R

Hence e" .Z(R). Now replacing x by x" in (2.28) we get

x’[(x’)’,y [x", y (2.29)

Thus

x"[(x’)’,y] -,,x"(x’)’-’ [x’,y]

nx"-x" /’-x’ -[x’,y]
nx" "-’x’-’’’’-’x’,y]

nx" x" ’" " ’)x[x", y
nx,,-,xO, -,o, /’-’[x,y]. (2.30)

and

[x",y nx" l[x,y
Thus, by using (2.30) and (2.31), we can write (2.29) as

nx" ’x" ’)" "- ’[x,y] nx" ’[x, y
Thus

Thus, by using (2.32), we get

Let a D(R) then

nx" -’(1 x0’- ,)o, .,., -)[x,y O

/IX" -1(1 Xt(S -1)(s +k -1)) [x, y 0

a"’-’’/’-’ Z(R)fqD(R)

(2.31)

(2.32)

(2.33)
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By using (2.33) we get

Then

If n a" [a,y O. Then

ha" -(I a’’ -l){s /k -)[a,y O.

(1 a‘(" )" /k ’))ha" Z[a, y O

(1 a"’ )’ /’ z)) D(R

(2.34)

and I(1 -a"’-)’ /’-)) O. Hence I 0, which is a contradiction. Thus we have

[a",y]-na"-[a,y]-O

Henceat[a",y]-[a,y]-Ofor all y ER. Now a Z(R). We know thatx" and x" Z(R). Thus

(x" x" ")[x,y x’[x,y x" "[x,y

=[x’/,y]_x"/x’[x",y]

[x’/ t, y]_x’x’[(x’/ )",y

[x",y]-x’’"[(x’’)’,y]

-[x’/,y]-[x’/,y]-O.

Hence (x -x" *-’/ t)x’-[x,y]- O. IfR is not commutative then by a well known result of Herstein [5]

there exists x tE R such that x x Z(R) where v en + ek e + > 1. By using smaller arguments as

in the last paragraph of case 1, we get a contradiction. Hence R is commutative.

We give examples which show that all the hypotheses ofour main theorem are essential. The following

example show that R is not cummutative if tn and n are not relatively prime or the ring is without unity in

0 a,b,c F, F field

0

the hypothesis of our main theorem.

EXAMPLE 1. Let

Then R is a ring without unity satisfying x[x2, y] Ix, y3] and for all non-negative integer k. But R is not

commutative.

EXAMPLE 2. Let

R a a,b,c,d GF(2)
0

Then R is a ring with unity satisfying x’[x4, y] Ix, y4] for all x,y tE R and for all non-negative integer k.

But R is not commutative.

ACKNOWLEDGEMENT. express my sincere thanks to the referee for his helpful suggestions.
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