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Abstract. In this paper we prove the following:
THEOREM. Let n > 1 and m be fixed relatively prime positive integers and k is any non-negative
integer. If R is a ring with unity 1 satisfying x*[x",y] =[x, y"]for all x, y €R then R is commutative.
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1. INTRODUCTION.
Psomopoulos [12] proved that if R is a ring with unity satisfying the properties that for eachx, y €ER,

() x'x"yl=[x,y™]
(i)  Gy)y =x"y"
(i) GyY =x'y*
where n > 1 and m are fixed relatively prime positive integers and k is any non-negative integer, then R is
commutative. In this paper we prove the theorem stated in the abstract which improve above theorem of

Psomopolous [12] where conditions (ii) and (iii) are superfluous.
Throughout, R will denote an associative ring with unit 1. We use the following notations.
Z(R), the center of R.
[x,y]=xy - yx
C(R), the commutator ideal of R.
N(R), the set of all nilpotent elements of R.
D(R), the set of all zero divisors in R.

2. MAIN RESULTS.

We state our main result as follows.

MAIN THEOREM. Let n > 1 and m be fixed relatively prime positive integers and & is any non-
negative integer. If R is a ring with unity 1 satisfying
*) 2[x",y]=[x,y"] forall x,y ER
then R is commutative.

We begin with the following lemmas which will be used in proving our main theorem.



66 V. GUPTA

LEMMA1([2], Theorem 1). LetR be aringsatisfying an identity g(X) = 0, where g(X)is a polynomial
identity in non-commuting in-determinates, its coefficient being integers with highest common factor one.
If there exists no prime p for which the ring of 2 x 2 matrices over GF(p) satisfies g(X) = 0, then R has a
nil commutator ideal and the nilpotent elements of R form an ideal.

LEMMA 2 ([8], p. 221). Ifx,y ER and [x,y] commute with x, then [x*, y] = nx"~'[x, y] for all
positive integer n.

LEMMA 3 ([9]). Let R be a ring with unity and let f : R — R be a function such that f{(x + 1) = f(x)
for all x €R. If for some positive integer n, x"f(x) = 0 for all x in R, then necessarily f(x) = 0.

LEMMA 4. If R is a ring satisfying (*) in the hypothesis of the main theorem then

C(R)CNR)CZ(R)
PROOF. By Lemma 3 of [12] we have N(R) CZ(R) when R satisfies x*[x",y] =[x, y"] for all
x,y €ER. This is a polynomial identity with coprime integral coefficients. But if we consider (i) x = e,
andy =e,, if #>1,m>1and (ii)x =€, and y =ex, if n > 1 and m = 1, we find that no ring of 2 x2
matrices over GF(p), p a prime, satisfies this identity. Hence by Lemma 1, C(R) is a nil ideal and thus
CR)SNR)CSZR).
PROOF OF MAIN THEOREM. By Lemma 4, we have
C(R)CNR)CZ(R)
Thus all commutators are central. Moreover, we know that R is isomorphic to a subdirect sum of subdirectly
irreducible rings R, each of which a homomorphic image of R satisfies the hypotheses of the theorem. Thus
we can assume that R is subdirectly irreducible ring. Hence I, the intersection of all non-zero ideals is
non-zero.
CASELl. Letn>1andm > 1.
By using Lemma 2, we write (*) as
nx"**~'[x,y]=[x,y™] forall x,y ER. 1)
Letc =2"**-2>0, then
ncxn ok-l[x’y] -n {241 Qkxu ok-l[x’y] - zxn 0k-l[x’y]}
- '32. ¢hxu tl-l[x’y] - znxn ot-l[x,y]

""(2‘7""1[2",)']-2[1’)"]

=[2x,y"]-2x,y"]=0. (2.2)
Hence ncx"**~'[x,y]=0 for allx,y €R. Now replace x by x + 1 and by using Lemma 3, we get
ncfx,y]=0. (23)

All cummutators are central and hence by Lemma 2
[x™,y]=ncx™ '[x,y]=0.

Thus x* €Z(R) for all x ER. We replace y by y™ in (2.1) to get

nx" e,y =[x, ). (2.4)
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Thus
nx 7 x, "] mnlx, y "R
= nmy™ " fx, y e+t
= nmy" x4,y
=my™~'[x,y"]
and

b O™ 1= mO™ by 1=y y =,y
Thus by using (2.5) and (2.6), we can write (2.4) as

2
my™ " '[x,y"]=my" "'y "V[x,y"]
my™ (1 y=-")[x,y"]=0
Hence
my""l(l _ym-(u-l)z) [x’yn] -0,
We claim that
DR)CZ(R).
Leta €D(R) then
ne(m - l)l ne(m - l)’
a E€ZR)NDR) and Ia =0.
By (2.7), we get
mau-l(l _au(n-l)z) [x’an] =0.
Thus (1-g*=-Y)ma"""[x,a"]=0.
If ma™~'[x,a"™] = 0, then
1-a*=-"eDR)
Hence I(1 -a™™-"")~ 0 and I = 0. This is contradiction. Now we have
ma”'[x,a™]=0.
Thus

nzxn bk-lxn ok-l[x’a] -’lx“ ok-l[x’au]

=[x.@")]

-m(@)" "'[x,a"]

2
=a"""ma"'[x,a"]=0.

Replacing x by x + 1 in (2.10) and using Lemma 3 we get
nx,a]=0.
By using Lemma 2, we can write (*) as
X", y]=my™'[x,y].
Letd =2"-2>0. Then
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(2.5)

(2.6)

2.7

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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mdy™ '[x,y]=m2"y" "'[x,y]-2y" "'[x,y]

=m(2y)" "' [x,2y]-2my" " '[x, y]
-xk[x“’ 2}’] - Zxk[x',)']
'xk[X',ZY] _x‘[x“,z)’] =0.

(2.13)

Hence mdy™ ~'[x,y] =0 for allx,y €R. Now replacing y by y + 1 and by using Lemma 3, we get

md[x,y]=0.

All commutators are central and hence by Lemma 2

[x’yu] ""d}’""l[x’)’] =0

Thus y™ € Z(R) for all y ER. Now replacing x by x" in (2.12), we get

Thus

x“[(x')",)’] - my“ -l[x“’y]

Y, y1= 2y T X" y]
- "xnkxn -lx(u —l)z[xn’y]

-nx" u-lx.t-kx(u-l)’[x.’y]

nek-1

2
- nxnx x(n -l&x(n -1) [xn’y]

n+k -lx(u ~1)(» +k -ITX'

=-nx »y]

m)’"l[x',)’] 'm[x'ry]y._l

- mnx" 'z, y ™!

n-1m-1

=mnx""y" " [x,y]
=nx""'my" " '[x,y]

n-lxk

=" xx", y]

-nxu »k-l[x-’y]

Thus by using (2.16) and (2.17) we can write (2.15) as

nx

u0l~lx(n-l)(nok-l{x-’y]-”xn 0k-l[xn,y] .

nxu tk-l(l _x(n-l)(n #k-l))[xu,y] - 0 .

Hence by using (2.18) we get,

Since a € D(R), we have

g% -Vet-DeZRYNDR) and @™ ~ert-Vag,

By (2.19) we get

This can be written as

Ifna"**-[a",y]=0. Then

nxu ok-l(l _xmdu-l)(n ﬁk-l))[x»’y] =0.

nauok—l(l _aMn-l)(u Qk-l))[a»,y] -0 .

(1 _aMn -1)(n +k1 -))nan Qk-l[an’y] =0.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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1-g™-Yet-D e p(R)
and I(1 — @™** -V +¥-1) _ 0 and hence I = 0, which is a contradiction. Thus we have
na"**"'[a",y]=0. (2.21)
Now
m’y""'y" Ya,y]=my" Ya,yJny" "' =a'la",ymy""
-a'my”'a",y]=a'a"[(a")',y]
"'"n(a ) [a',y] —a™*tng"1g® '"z[a",y]

_ania(n-l)zmn ol—l[a-’y]_ 0. (2.22)
Replacing y by y + 1 in (2.22) and using Lemma 3, we get
mia,y]=0 forall y€ER.

Replacing y by x, we get
mix,a]=0 forall xER. (2.23)

Butm?and n2are relatively prime. Hence there exists integers a.and f such thatm’a + n’g = 1. Multiplying

(2.11) by B and (2.23) by a and adding, we get
[x,a]=0 forall x€ER.

Hence a € Z(R), which proves our claim.

We know that x™ and x*™ €Z(R). Thus
(xn _xnu)”xu ok-l[x’y] - "xnx- “"l[x,y]—nx""x" ok—l[x,y]
nx"*t e, x ™y ] - x*x, ]

nx” 1,2y ] - [x, % y)")
ik, x™y]-nxt ttx,x*y]=0.
Thus (x — x™ = *)nx" ** 1™ ~1[x, y] =0, i.e.
n(x -x"f[x,y]=0 forall x,y ER (2.24)
wheret =ncm -nc +1>1andp =n +k+nc -2.
We know that y™ and y™* € Z(R). Thus
O™ -y *ymy™ M, y) = my™y" 'x,y]-my™*y"'[x,y]
=my" [y~ y1-y~*x'[x", y]
=my" " '[y™, y]-x'[y™), y]
=my" " '[y™,y]-my"y™,y]=0
Thus m(y -y -m4*1)ymd-1y=-I[x y]=0. That is m(y —y*)y’[x,y]=0 for all x,y ER, where
u=mdn-md+1>1andq =md +m -2. Interchanging x and y, we get
m(x -x*xx,y]=0 forall x,y ER. (2.25)
We know that (m,n) = 1. Hence there exists integers & and § such that ma +nf = 1. Multiplying
(2.24) by B(x —x“)}x? and multiplying (2.25) by a(x —x‘)x? and adding, we get
(x-x")(x -x*%?*[x,y]=0 forall x,y ER
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This can be written as
(x -x’h(x)%"***'[x,y]=0 forall x,y ER (2.26)
where h(x) is a polynomial in x with integers coefficients.

Suppose R is not cummutative. Then by a well known result of Herstein [6], there exists x € R such
that x —x?h(x) @ Z(R). From this it is clear that x & Z(R). Hence x and x ~x?h(x) is not a zero divisor.
Hence (x - x%h(x))x” **! is also not a zero divisor. Thus

[x,y]=0 forall y€ER (2.27)
This gives a contradiction. Hence R is commutative.
CASE 2: Letn >1andm = 1. Then (*) can be written as

x'[x",y]=[x,y] (2.28)
Lete =2'*"-2>0. Then
elx,y]=2"""[x,y]-2x,y]

=2 1", y]-[2x,y]

= (2} [(2¢), y]1-[2x,y]

=[2x,y]-[2x,y]=0.
All commutators are central and hence by Lemma 2,

[x*,y]=ex*"'[x,y]=0 forall x,y ER.

Hence e EZ(R). Now replacing x by x" in (2.28) we get

Y, y]= [y 229
Thus
@), y]=nx ) T 7,y ]
-nxtx® - Ux- “z[x',y ]
N -1)’[x- y]
-nx" ol - e ""’[x",y]
-nx" Dk 'l)x"[x',y]
- nxt i Dek oy (2.30)
and
[xu’y]_nxn-l[x,y] . (231)
Thus, by using (2.30) and (2.31), we can write (2.29) as
nxn - lx(a -1)(» bk—lTx’y] - nxn -l[x’y] .
Thus
nx" (1 -x D), y] 0. (232)
Thus, by using (2.32), we get
nx" (1 -xC-DeE-D Iy y]=0 (2.33)
Leta € D(R) then

g Ve t-DeZ(R)NDR) and g e+ -Dag,
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By using (2.33) we get
na""'(1-a**~"¢**-Ng y]=0.
Then
( _g Ve "'")na"'l[a,y]-o. (2.34)
Ifna" '[a,y]=0. Then
(1-a®-"*t-HeDR)

and [(1 —a*® -V +£-1y 20, Hence I =0, which is a contradiction. Thus we have

[a",y]=na""'[a,y]=0.
Hence a*[a",y]=[a,y]=0forally ER. Now a EZ(R). We know that x* and x* € Z(R). Thus

en +ek en +cki

(x‘ -X )[x,y]-x‘[x,y]—x [x’y]

e+l

-[x ’y]_xﬂ‘dx‘[x“’y]

- [x¢’l’y]—xdxk[(x”l)~’y]
S DY) Y )

- [x¢¢l,y]_[x¢ol’y] =0.
Hence (x —x= **~<*')x*~![x,y] = 0. If R is not commutative then by a well known result of Herstein [5]

there exists x €R such that x —x" € Z(R) where v = en + ek —e + 1 > 1. By using smaller arguments as
in the last paragraph of case 1, we get a contradiction. Hence R is commutative.

We give examples which show that all the hypotheses of our main theorem are essential. The following
example show that R is not cummutative if m and n are not relatively prime or the ring is without unity in
the hypothesis of our main theorem.

EXAMPLE 1. Let
0 a b
R-{O 0 ¢ :a,b,cEF,F:ﬁeld}

00 O

Then R is a ring without unity satisfying x*[x% y] =[x, y*] and for all non-negative integer k. But R is not

commutative.
EXAMPLE 2. Let

a b ¢
R=!l0 a d|:a,b,c,d EGF(2)
0 0 a

Then R is a ring with unity satisfying x*[x*,y] =[x, y*] for all x,y € R and for all non-negative integer .
g g y y y 8

But R is not commutative.
ACKNOWLEDGEMENT. I express my sincere thanks to the referee for his helpful suggestions.
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