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ABSTRACT. Using ideas of Pisier, the concept of complete positivity is generalized in a different
direction in this paper, where the Hilbert space H is replaced with a Banach space and its conjugate
linear dual. The extreme point results of Arveson are reformulated in this more general setting.
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1. INTRODUCTION.

In [6], Pisier studied completely bounded maps from a C*-algebra to B(X,Y), the space of
bounded operators between two arbitary Banach spaces X and Y. Of course , there is a general-
ization of ordinary completely bounded maps. In this paper, we first define complete positivity for
a map from C*-algebra to B(X, X*), where X* denotes the antilinear dual space of X ( the set of
all conjugate linear functionals on X). Then we give a representation theorem, and give complete
solutions to three extremal problems.

In this paper, the C*-algebra A always has an identity.

2. COMPLETELY POSITIVE OPERATORS.
DEFINITION 2.1. Let X be a Banach space, and T € B(X, X*). We call T positive if, for
all positive integers n and z,,...,z, € X, we have
n o
22 T(:)(=,) 2 0.
=1 =1
REMARK 2.2. We have G(X)* = £;(X7), and so M,(B(X,X*)) = B(£}(X),&X") =
B(£3(X),63(X)*). Thus we may define positivity for M, (B(X,X*)).
DEFINITION 2.3. Let A be a C*-algebra, ¢ a linear map from A to B(X,X*) and let
ona(a,;) = (#(ay,)) for (a,;) € M,(A). If ¢, is positive for all n, then we say ¢ is completely positive.
THEOREM 2.4. Let ¢ : A — B(X,X") be a completely positive map. There is a Hilbert
space ‘H, a representation 7 of A on H and a bounded operator V € B(X,H) such that, for all
a€A,

¢(a) = V*r(a)V,
and H = [r(A)V X], where V*(h)(z) =< h,V(z) >, forall h € H,z € X.
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PROOF: Consider the vector space tensor product A® X and define a bilinear form as follows:
Hu=506+... +2m @&yt =11 OMm+ ...+ Yn Q7n,

<u,v>= Z(MM%)({:))(W)-

Because ¢ is completely positive, we have the fact that <,> is positive semi-definite. For cach

a € A, define a linear transformation mo(a) on A® X by
(a3 7, 0) = Tlar,) 06,
=
7o is an algebra homomorphism for which
< u,mo(a)v >=< mo(a”)u,v >

for all u,v € AQ X.

For fixed u, p(a) =< mo(a)u,u > defines a positive linear functional on A; i.e, p(a*a) > 0.
Hence, < mo(a)u, mo(a)u >=< mo(a*a)u,u >= p(a*a) < |[a*a|lp(1) = (|a||* < u,u >, where 1 is the
identity of A.

Now let R = {u € A® X :< u,u >=0}. R is a linear subspace A® X, invariant under o(a).
for all a € A. So <,> determines a positive definite inner product on the quotient (A® X)/R in

the usual way.
Let H=(AQ® X)/R. There is a unique representation 7 of A on H such that

w(a)(u+ R) = moa)u + R

acA,ue AR X.
We define a linear map V: X — H by

V) =1@¢+R

for all ¢ € X.

We may verify that V is bounded, and ¢(a) = V*x(a)V for all a € A.

Let R, = [x(A)VX] C H, and m(a) = n(a)|g, for all a € A. Because n(1) = I, so V(X) C R;.
We have V*r(a)V(z,) = V*r(a)|r,V(z1) = V*m(a)V(z1) = #(a)(z,), for all z; € X, a € A. So
we may assume that H = [r(A)V X].

Suppose ¢: A — B(X,X*) is a completely positive map. If there exists Hilbert spaces H;,

representations 7, of A on H;, and bounded operators V, : X — H; then
#(a) = Vrmi(a)V,,

for i = 1,2, where H, = [r,(A)V,X]. Define U: H, — H, by

U(zn: 7!'1(0,)‘/16,) = i Wt(“l)%{i»

=1 =1
for all ay,...,a, € A,¢1,...,& € X. Then we need to extend to H;. We may verify that UV} = V,
and Uy (a) = m3(a)U for all a € A.
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Next we verify that U is an unitary.

< }j:lu(a.)vzc.,i] rala)Vit, >
) i E::Z < my(aja,) Vo, Vak, >
‘;iaa;a.)«.)«,)

EZ < m(aja )Wk, Vig, >

< Z’rl(at)vlguzwl(az)vlét > .

Zz < 7l-2'(“!)‘/2611 ”2(“))"2{1 >

So the representation given in Theorem 2.4 is unique up to unitary equivalence.

3. PREPARATIONS.
NOTATION 3.1. Let CP(A, X) denote all completely positive linear maps from A to B(X, X*).
LEMMA 3.2. Let ¢, and ¢; belong to CP(A, X), and suppose that ¢, < ¢;. Let ¢,(a) =
V=r.(a)V, be the canonical expression of @,, where =, is a representation of A on R; such that
[m.(A)V,.X] = R,, 2 = 1,2. Then there exsists a contraction T € B(R,, R,) such that

TV =W,

Tmy(a) = m(a)T

for all a € A.
PROOF: For every &,...,&, € X,ay,...,a, € A,

IS m@UEIR = <3 m@)Viby 3 mla)Vit; >
1=1 =1

Z Z m (a;a-)Vl(f:)(E:)
3 dilaja)(&)(E,)

PIPIX-HCHR(HI(H)

IA

||zn:7"2(“1)Vz€: i

=1

Define T: R, — R, by
T(3_7y(a,)Vat,) = 3_m(a;)Vag;
=1

=1
We can verify that above two statements hold.
NOTATION 3.3. For ¢ € CP(A,X), let [0,8] = { € CP(A, X);¢ < ¢}. Let ¢(a) =
V*x(a)V for all a € A. For each operator T € n(A), define a map ¢r(a) = V*Tr(a)V. Then

T — ¢7 is linear. If ¢ = 0, we have

< Tr(a)VE, 7 (b)Vy >=< Tr(b'a)VE,Vn >= ¢r(b"a)(€)(n) = 0

< T(Z"; w,(a.)V{,),iw(b,)V{, >=0.
1=1

1=1

So T = 0. That is, T — ¢ is injective.
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THEOREM 3.4. T — ¢r is an affine order isomorphism of the partially ordered convex set
of {T € m(A) :0<T < I} onto [0, ¢].
The proof of this theorem is exactly the same way as the proof of theorem in Arveson’s paper

(1.
4. THE THREE EXTREMAL PROBLEMS.

Now we come to discuss three extremal problems.

DEFINITION 4.1. A completely positive map ¢ € CP(A, X) is pure if, for every ¥ €
CP(A,X), v < ¢ implies that ¢ is a scalar multiple of ¢.

REMARK 4.2. According to [3], the extreme rays of CP(A, X) can be characterized as the
half lines {t¢ :t > 0}, where ¢ is a pure element of CP(A, X).

We state the following theorems without proofs, for the proofs are almost the same as those in
Arveson’s paper [1].

THEOREM 4.3. All nonzero pure elements of CP(A, X) are precisely those of the form
#(a) = V*m(a)V, where 7 is an irreducible representation of A on some Hilbert space R and
V € B(X, R), such that R = [r(A)V X).

THEOREM 4.4. Let ¢ € CP(A, X) and let ¢(a) = V*r(a)V be its canonical representation.
The extreme points of [0, ¢] are those maps of the form V*Pr(a)V, where P is a projection in 7(A)'.

We consider the extreme points of the set CP(A, X; K) = {¢ € CP(A,X);$(1) = K}, where
K is a fixed positive operator in B(X,X*).

THEOREM 4.5. Let ¢ € CP(A,X; K) and let n(a) = V*r(a)V be its canonical representa-
tion with V*V = K. Then ¢ is an extreme point of CP(A, X; K) if and only if [V X] is a faithful

subspace for the commutant 7(A)’ of 7(A).
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