

A CRITERION FOR p -VALENTLY STARLIKE FUNCTIONS

SHIGEYOSHI OWA

MAMORU NUNOKAWA

SEIICHI FUKUI

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577, Japan

Department of Mathematics
Gunma University
Aramaki, Maebashi, Gunma 371, Japan

Department of Mathematics
Wakayama University
Wakayama 640, Japan

(Received December 22, 1992 and in revised form April 19, 1993)

ABSTRACT. The object of the present paper is to prove a criterion for p -valently starlike functions in the open unit disk.

KEY WORDS AND PHRASES. Analytic, open unit disk, p -valently starlike.

1991 AMS SUBJECT CLASSIFICATION CODE. Primary, 30C45.

1. INTRODUCTION.

Let $A(p)$ be the class of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in N = \{1, 2, 3, \dots\}), \quad (1.1)$$

which are analytic in the open unit disk $U = \{z: |z| < 1\}$. A function $f(z)$ belonging to $A(p)$ is said to be p -valently starlike in U if it satisfies

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in U). \quad (1.2)$$

We denote by $S(p)$ the subclass of $A(p)$ consisting of functions $f(z)$ which are p -valently starlike in U (cf. [1]).

Recently, Nunokawa [4] has shown that

THEOREM A. If $f(z) \in A(p)$ satisfies $f(z) \neq 0 (0 < |z| < 1)$ and

$$\operatorname{Re} \left\{ \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} \right\} < 1 + \frac{1}{2p} \quad (z \in U), \quad (1.3)$$

then $f(z) \in S(p)$.

In the present paper, we derive a new criterion for the class $S(p)$ involving the above result by Nunokawa [4].

2. A NEW CRITERION.

To derive our main result, we have to recall here the following lemma due to Jack [2] (also, due to Miller and Mocanu [3]).

LEMMA. Let $w(z)$ be analytic in U with $w(0) = 0$. If $|w(z)|$ attains its maximum value on the circle $|z| = r < 1$ at a point z_0 , then we can write

$$z_0 w'(z_0) = k w(z_0), \quad (2.1)$$

where k is a real number and $k \geq 1$.

Now, we prove

THEOREM. If $f(z) \in A(p)$ satisfies $f(z) \neq 0 (0 < |z| < 1)$ and

$$\left| \arg \left\{ \frac{f(z)}{zf'(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) - \left(1 + \frac{1}{4p} \right) \right\} \right| > 0 \quad (z \in U), \quad (2.2)$$

then $f(z) \in S(p)$ and

$$\left| \frac{zf'(z)}{f(z)} - p \right| < p \quad (z \in U). \quad (2.3)$$

PROOF. Define the function $w(z)$ by

$$\frac{zf'(z)}{f(z)} = p(1 + w(z)). \quad (2.4)$$

Then $w(z)$ is analytic in U and $w(0) = 0$. It follows from (2.4) that

$$1 + \frac{zf''(z)}{f'(z)} = p(1 + w(z)) + \frac{zw'(z)}{1 + w(z)}, \quad (2.5)$$

so that,

$$\frac{f(z)}{zf'(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) = 1 + \frac{zw'(z)}{p(1 + w(z))^2}. \quad (2.6)$$

Suppose that there exists a point $z_0 \in U$ such that

$$|z| \stackrel{\max}{\leq} |z_0| \quad |w(z)| = |w(z_0)| = 1 \quad (w(z_0) \neq -1).$$

Then, applying Lemma, we can write

$$z_0 w'(z_0) = kw(z_0) \quad (k \geq 1)$$

and $w(z_0) = e^{i\theta} (\theta \neq \pi)$. Thus we have

$$\begin{aligned} \frac{f(z_0)}{z_0 f'(z_0)} \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} \right) &= 1 + \frac{ke^{i\theta}}{p(1 + e^{i\theta})^2} \\ &= 1 + \frac{k}{2p(1 + \cos\theta)} \\ &\geq 1 + \frac{1}{4p}. \end{aligned} \quad (2.7)$$

Note that the condition (2.2) implies

$$\frac{f(z)}{zf'(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \neq \alpha \quad (z \in U), \quad (2.8)$$

where $\alpha \geq 1 + 1/4p$. Therefore, (2.7) contradicts our condition (2.2). Consequently, we conclude that

$$\left| \frac{zf'(z)}{f(z)} - p \right| < p \quad (z \in U), \quad (2.9)$$

that is, that $f(z) \in S(p)$.

Letting $p = 1$ in Theorem, we have

COROLLARY. If $f(z) \in A(1)$ satisfies $f(z) \neq 0 (0 < |z| < 1)$ and

$$\left| \arg \left\{ \frac{f(z)}{zf'(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) - \frac{5}{4} \right\} \right| > 0 \quad (z \in U), \quad (2.10)$$

then $f(z) \in S(1)$ and

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \quad (z \in U). \quad (2.11)$$

ACKNOWLEDGEMENT. The research of the first author was supported in part by Japanese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific Research (No. 04640204).

REFERENCES

1. GOODMAN, A.W., On the Schwarz-Christoffel transformation and p -valent functions, *Trans. Amer. Math. Soc.* **68**, (1950), 204-223.
2. JACK, I.S., Functions starlike and convex of order α , *J. London Math. Soc.* **3** (1971), 469-474.
3. MILLER, S.S. & MOCANU, P.T., Second order differential inequalities in the complex plane, *J. Math. Anal. Appl.* **65** (1978), 289-305.
4. NUNOKAWA, M., Certain class of starlike functions, to appear.

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es