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ABSTRACT. We proved that there does not exist a proper CR-hypersurface of S6 with parallel
second fundamental form. As a result of this we showed that $8 does not admit a proper
CR-totally umbilical hypersurface. We also proved that an Einstein proper CR-hypersurface of

58 is an extrinsic sphere.
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1. INTRODUCTION.

It is known that of all the Euclidean spheres $2 and % admit the almost complex structure
of which 52 is complex and $% is not. It is also known that S0 is an almost hermitian manifold
which is nearly Kaehler but not Kaehler [4], that is, the almost complex structure is not parallel
with respect to the Riemannian connection on $%. Among all submanifolds of an almost
Hermitian manifold, there are three typical classes; one is the class of holomorphic submanifold,
one is the class of totally real submanifolds and the third is the class of CR-submanifolds. This
last class was introduced by Bejancu [1]. Let (M,J,g) be an almost Hermitian manifold with
almost Hermitian structure (J,9) and M be a Riemannian submanifold of M. The M is called a
CR-submanifold of M if there exists a CR-holomo"rphic distribution D, i.e., JD=D on M such
that its orthogonal complement DL is totally real, i.e., JD L ¢ » where v is the normal bundle
over M in M. A CR-submanifold is called proper if neither D =0, nor DL =0. The three classes
of submanifolds of $%, including CR-submanifolds, have been studied by several authors [2], [3],
[5]. In this paper, we consider CR-hypersurfaces of 5. We obtain the following results:

THEOREM 1. There does not exist a proper CR-hy\persurface of §5 with parallel second
fundamental form.

THEOREM 2. $% does not admit a proper CR-totally umbilical hypersurface.

THEOREM 3. Let M be an Einstein proper CR-hyperstirface of 5%, then M is an extrinsic
sphere.

PRELIMINARIES. Let (M,9) be a Riemannian manifold and M be a Riemannian
submanifold of M. Let V (resp. V) be the Riemannian connection on M (resp. M) and R (resp.
R) be the curvature tensor of M (resp. M). Denote by h the second fundamental form of M in M.
Then the Gauss formula and the Weingarten formula are given respectively by

VxY =V xY+hX,Y) (1.1)
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= L
VxN=—-ANX+V xN X,Y € B(M) (1.2)
Nev
L = .
where — Ay X (resp. V xyN) denotes the tantial part (resp. normal part) of ¥V yN. The tangential
component Ay X is related to the second fundamental form by

g(h(X.Y),N):g(ANX,Y), X,YGS(M).

The Gauss equation is given by

9(R(X,Y)Z,W) = g(R(X,Y)Z,W) + g(h(X,W),h(Y,Z)) — g(h(X, Z),h(Y,W)) (1.3)

The Codazzi equation is

9(R(X,Y)Z,N)=g((V xh)(Y,Z2) - (¥ yh)(X,Z),N) (1.4)
where n
(9 xh)XY.2)= V xh(Y,2)~h(V x¥,2)-KY,V x2)

If (¢;)i =1,2, - - -,n is a frame field for M, then the Ricci curvature S of M is given by

S(X,Y)= i R(e;, X, Y ¢)).
i=1

The submanifold M is called an Einstein manifold if S(X,Y)=cg(X,Y) for some constant ¢ and
any X,Y € B(M). M is said to be totally umbilical if A(X,Y)=g(X,Y)H where H is the mean
curvature vector defined by H =1 trace h.

M is called an extrinsic sphere if % xH =0 for any X € %(M). The CR-submanifold M is
called a CR-product submanifold if it is locally the Riemannian product of a holomorphic
submanifold and a totally real submanifold. Sekigawa [6] proved that in S® there does not exist
any CR-product submanifolds.

2. PROOF OF THE MAIN RESULTS.

PROOF OF THEOREM 1. Since the second fundamental form is parallel we have
(VANV)=0 or VAV =AV LV for any V, We$(M). If V is an eigenvector of A with
corresponding eigenvalue 8, i.e., AV =gV, then from the equation Vy,(AV)=AVyV we get
BV wV=AVyV. This means that Vv is an eigenvector corresponding to eigenvalue g
whenever V is. If T is the eigenspace of g then VT ¢ T.

Since M is a proper CR-hypersurface of S8, we can take {E|,JE|,Ey,JEy, €} as an
orthonormal frame field for TM where E|,EoeDand €D 1. Also since the normal bundle is 1-
dimensional we assume that the frame {E,,JE,E9,JE,,£} diagonalizes A. So let AE; =a E,,
AJE| =G |JE|,AEy = a9Ey, AJEy =0 9JE, and Af=p¢. We consider the two cases for the
eigenvalues o, ;0 i=1,2.

CASE1: o;#panda;# g foralli=1,2

In this case we have ¢(V &, E;) = o(V €, JE;) = 0 for all W € (M). This gives VceD4,
i.e., the distribution DL is parallel. Since V€D we get V& =0. This last equation with
9(6,X) =0 for X € D gives VX € D, i.e., the distribution D is also parallel. This implies that M
is a CR-product, a contradiction, since S8 does not admit any CR-product submanifold [6].

CASE 2: o; =pora; =g for some i,.

Without loss of genera.‘ljity let us assume that «; =g for some i,. Then the space T spanned
by {Eio,f} is the eigenspace of eigenvalue ,B:a,-o.o We then have VT ¢ T. In particular
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VE § =aE;+b¢ for some functions a and 6. Since g(VE £,€)=0, we get VE f..aE Also
using the equation ¥ JE =Jv E, E with the help of equatlons (1.1) and (1.2) and the fact

that heJD L wegetg(VE E,,f)_o From which we get ¢(V g §&E;)=0,ie, Vg £=0. Now
'O o lo o la

using this last equation and the fact that v 6 =0, we get

R(E,'oyf)f = VE'ovgf— VEVEIof- V[E'o'ﬂ{ = gE.f .
£ %

But V E; =cE; +d¢=0since o(V E; E; )=0. o(V ¢E; 6= ~g(V & E; ) =0. So R(E; .€)¢=0.

However from Gauss equation we obtam 9(R(E; ,f){.E )—c+ﬂ2>0 whlch is a contradlctlon

This finishes the proof of Theorem 1.

PROOF OF THEOREM 2. Since M is totally umbilical we have h(X,Y)=g(X,Y)H for any
X,Y € 5(M). Using this in Codazzi equation (1.4) we get g(R(X,Y)Z,N)= g(g(Y‘Z)% xH
-9(X,2)V yH,N). S_’Lince the ambient space s% is of constant curvature we have
9(9(Y,2)V xH—g(X,Z)V yH,N)=0,X,Y,Z€ B5(M). Now for any X € $(M), choose Y such that
9(Y,X)=0 and let Z=Y. Then the above equation gives V yH =0, i.e., H is parallel. Using a
frame field (E;),1<i<5 with Eg in DL and the rest in D, one can write H = vJEg for some
constant y. Also the equation h(X,Y) = g(X,Y)H gives h(E;,E;) = vJEg, and h(E; Ej)=0 for i # ;.
Note that in this case

- L
(VEih)(Ef' Ey=V Eih(EJ" Ep)—h( VEiEj,Ek)—h(Ej, inEk)
=Eg(ELENH =0 for all i, ;.

where we have used the equation h(X,Y)=g(X,Y)H in the second equality. This means that M
has parallel second fundamental form. Then using Theorem 1 we obtain Theorem 2.

PROOF OF THEOREM 3. Let {X,Y,JX,JY,Z} be an orthonormal frame for TM where
X,YeDand Ze DL . Since M is a hypersurface we know that the above frame diagonalizes A.

Therefore one can write

. h(Z,2)=alZ,M(X,X) = BIZ,WIX,JX) = vIZ,h(Y,Y) = 6JZ,h(JY,JY) =] 2
an
h(Z,X)=h(Z,JX) = N2Z,Y) = h(Z,JY) = h(X,J X) = h(X,Y) = h(X,JY) = lY,JY) =0

where a, 8,7,6,7 are smooth functions on M. Then using Guass equation (1.3) we get

S(Z,2)= R(X,2,2,X)+ R(JX,2,2,JX)+ R(Y,2,2,Y)+ RUJY,2,2,JX) = 4dc + o(B + 7+ 6 +1)

Similarly

S(X,X)=4c+pBa+y+6+1)
S(UX,JX)=4c+v(a+B+6+7)
S(Y,Y)=4dc+b6(a+B+7+n)
SUJY,JY)=4c+n(a+B+6+1)

Since M is Einstein we have

' 8(2,2) = S(X,X) = S(JX,JX) = S(Y,Y) = §(JY,JY) = constant
ie.,

a(f+v+6+n)=Ba+r+s+n)=v(a+B+6+n)=6(a+B+7+n)=n(a+B+7+6)=const.

(i) (i) (iif) (iv) ™)
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We shall show that a,3,7,é and 7 are constants. From the above equations we have:

a(y+6+n)=pB(v+6+n), Bla+b+n)=v(a+é+n)
Ya+B+n)=ba+B+n) bla+B+y)=n(a+B+7)

We seek all solutions for this system. One obvious solution is a = 8 = y = § = n = const. The other
possible solutions are the following cases:
(a) Y+é+n=a+b+n=a+f+n=a+f+7=0
In this case we have a =y =1 =const. and § = 8 considering (i) and (iv) with § =8 we
get 6 =B =a =const. or § = f = —2a = const. So for this case a,3,7,8,n are constants.
(b) a=Ba+s+n=a+f+n=a+Bf+7=0,ie,a=p0=6and n=9. Using (ii) and (v) with
a=f=26weget n=v=a=const. or = v = —2a = const., i.e., a, 3,7,6,n are constants.
(¢) e=pf=va+Bf+n=a+B+7=0, ie, a=f=y=n Using (i) and (iv) with this last
equation we get a = f =y =1n=46=const. (Note that in case a=f=7=6=0, then M is
totally geodesic and hence é = 0).
(d) a=f=v=6a+B8+7=0, ie, a=f=7=6=0. Following the note in (c) we have
n=0.
Therefore in all cases a = 8 =y =6 = n=const. We conclude that H = aJZ where a is constant and
thus v VL H =0 for any V € (M), i.e., M is an extrinsic sphere.
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