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ABSTRACT. For a function f € H*(B,) , with f(0) = 0, we prove
@® f0< p<s,then
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where R*f is the fractional derivative of f. These results generalize the known cases s = 2,8 =

1(1D.
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1. INTRODUCTION.
Let C" denote the n-dimensional vector space over C. Let B, denote the unit ball in C* with
boundary 3B, and let o denote the rotation-invariant positive measure on aB, for which ¢(3B,) = 1.
We assume that f is holomorphic in B, . Let Rf(z) = ‘golal‘a,z‘ be the fractional derivative of

f(2) = goa.Z‘(ﬁ > 0).
For 0 < p,s,8 < oo, we set

M) = [ £ GD1tda)
and
1 £ sus = [ 1f D1 1RG0 {108 1) 110020

As usual,for 0 < p << oo, H?(B,) denotes the space of holomorphic functions on B, for which
the means M, (r, f) are bounded and the norm of f € H*(B,) is defined by
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Al = SUPo«lM;(rof)-
Throughout this note,we assume that f € H*(B,) , with f(0) = 0.

In [1], Hardy—Littlewood proved the following well —known theorem about H*(B,) .
THEOREM HL. f0< p< 2 ,f € H*(B,), then

[[a-rMe.rrar <o ()
If 2<< p < oo, then ( *) implies f € H*(B,).

In this note, we generalize these results to the unit ball B,, with a new and short proof. That
is, we prove the following

THEOREM. @ If0< p<s, then
1 sp—1
[r1(108 1) Myr RN < N N52 1 1 30
®1f5<P<°°9 then
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Set s = 2,8 = 1in the Theorem; by the following
LEMMA. For 0 < p < oo, then

NANs=2 0132
we have the following corollary, which extends Theorem HL (note that for { € B,, R'f(A&) =

Af (X, where fr(X) = f(A), A € B,, and rlog % ~1—1)
COROLLARY. @ I 0 < p < 2, then

1
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@I 2<p<oo, then
1 £13< 2 7 (1og L) M, R 3
PSP 8 ) MMTy

2. PROOF OF THE MAIN RESULTS.

PROOF of the Theorem. Let 0 < p <{s. Assume without loss of generality that || f|| , % 0.
<

Set p#(§) = J%%—'. then .L #(§)da($) < 1; we have , by Jensen’s inequality, for each r,
?» .

(176D 1 1R D 1doe

Y]
= £, 1 BEED purdoy

> 1718, |BER | uwraecer

= W5 1RGO 1Pao)

= | FII§ M+, RE)

[ 176D 1RGO 1o @) > 1 £ 1 M R



EXTENSIONS OF HARDY-LITTLEWOOD INEQUALITIES 195
Therefore
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The case p == sis treated in a similar way to obtain,for each r,

[ 1760 1= RGO 1o < 1 £ 5 Myr RS

p—
1 £ 80 =[] 1760 1 1RGO F(10g 1) rrdarar

1 -1
< I (108 L) M R DG

This completes the proof of the Theorem.
Now ,we use the technique of [2] to give the proof of the lemma.
For{ € B,, R f(A) = Af';(), where f;(3) = f(A)), A € B,.
By the Hardy —Stein identity for one complex variable ([3]) we have

M3 f = Lol [T £i0e> 17217 o 1108 5 ) e

2 (r (2%
= Z[ {71 7¢ten 1711 RS ot |1 10g Z) o™ dbdp
Integrating with respect to do({), using the Fubini theorem and the formula
1 )
Ls.g({')da(t) = z—xja.da(t) [Tacpan, g€ L'
(see [4,P.15]), we have
= 2| —2| p1 2 I\,
M6 = [ [ 17014 R £ 1ok 5)pdntde

Letting r—~1,we obtain the Lemma.
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