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ABSTRACT. The primary goal of this note is to prove the congruence ¢35 (3n 4+ 2) =0 (mod 3),
where @3 (n) denotes the number of F-partitions of n with at most 3 repetitions. Secondarily, we
conjecture a new family of congruences involving c¢, (n), the number of F-partitions of n with 2

colors.
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1. INTRODUCTION.

The two functions ¢, (n) and c¢. (n) were introduced by George Andrews [1]. ¢m(n)
denotes the number of F-partitions of n with at most m repetitions, while c¢m (n) gives the
number of F-partitions of n with m colors. In [1], Andrews notes that there are a number of

interesting congruences for both the ¢m (n) and cém (n). Some of these include the following:

$2(5n + 3) =0 (mod 5), (1.1)
cp2(5n +3) =0 (mod 5), and (1.2)
chm (n) =0 (mod m?) if m is prime and m does not divide n. (1.3)

Louis Kolitsch [2] later found the following family of congruences:

(mod 32°%2%) if a is even

1.4
(mod 3%2°+1) if « is odd, (1-4)

cp3(3°n+ X)) =0 {

where ), is the reciprocal of 8 modulo 3*.

Given the congruences above, it would appear that the functions cém (n) satisfy more par-
tition congruences than do the functions ¢, (n). However, the primary goal of this paper is to
prove a new congruence involving ¢3 (n), not c¢s(n). The proof is very elementary, similar to
the proof given by Andrews for congruences (1.1) and (1.2) above.
2. A NEW CONGRUENCE INVOLVING ¢3.

The congruence to be proven is the following:

THEOREM: For all n > 1,

#3(3n+2)=0 (mod 3). (2.1)
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Proof: From Andrews [1; p. 12], we know that

S g (n)q" = (q;)s S Y (e
n=0 11/00 m=—o0 n=-—00
E(q—i“}ﬂ) > @™ Y (-)rY (mod3).

The theorem is then proved provided we show that all coefficients of ¢3"*? in the double sum

3n+2

above are divisible by 3. In order to get a contribution to ¢ , we must have

3m? 4+ n? = 2 (mod 3)
= n? =2 (mod 3).

However, there is no integer n which satisfies this congruence. Hence, the theorem is proved. B
3. CONCLUDING REMARKS.

It is interesting to note the “pairs” of congruences above, namely (1.1) and (1.2), as well as
(1.4) and (2.1). Note that the case @ =1 in (1.4) above is

c$3(3n+2)=0 (mod 3°%).

Moreover, it is also interesting that the second pair involves an infinite family of congruences,
while the first pair does not. However, thanks to empirical data which is easily calculated using
the generating function for cé;, we can conjecture the following family of congruences similar to
(1.4) above:

CONJECTURE: Foralln > 1,

ch2(5%n+ Ao) =0 (mod 5%),

where A, is the reciprocal of 12 modulo 5*. The first case of this conjecture is congruence (1.2)

above.
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