

RESEARCH NOTES
CONGRUENCES INVOLVING F-PARTITION FUNCTIONS

JAMES SELLERS

Department of Science and Mathematics
Cedarville College
Cedarville, OH 45314

(Received August 10, 1992)

ABSTRACT. The primary goal of this note is to prove the congruence $\phi_3(3n+2) \equiv 0 \pmod{3}$, where $\phi_3(n)$ denotes the number of F-partitions of n with at most 3 repetitions. Secondarily, we conjecture a new family of congruences involving $c\phi_2(n)$, the number of F-partitions of n with 2 colors.

KEYWORDS AND PHRASES. Congruence, partitions.

1991 AMS SUBJECT CLASSIFICATION CODE. 05A17, 11P83.

1. INTRODUCTION.

The two functions $\phi_m(n)$ and $c\phi_m(n)$ were introduced by George Andrews [1]. $\phi_m(n)$ denotes the number of F-partitions of n with at most m repetitions, while $c\phi_m(n)$ gives the number of F-partitions of n with m colors. In [1], Andrews notes that there are a number of interesting congruences for both the $\phi_m(n)$ and $c\phi_m(n)$. Some of these include the following:

$$\phi_2(5n+3) \equiv 0 \pmod{5}, \quad (1.1)$$

$$c\phi_2(5n+3) \equiv 0 \pmod{5}, \text{ and} \quad (1.2)$$

$$c\phi_m(n) \equiv 0 \pmod{m^2} \text{ if } m \text{ is prime and } m \text{ does not divide } n. \quad (1.3)$$

Louis Kolitsch [2] later found the following family of congruences:

$$c\phi_3(3^\alpha n + \lambda_\alpha) \equiv 0 \begin{cases} \pmod{3^{2\alpha+2}} & \text{if } \alpha \text{ is even} \\ \pmod{3^{2\alpha+1}} & \text{if } \alpha \text{ is odd,} \end{cases} \quad (1.4)$$

where λ_α is the reciprocal of 8 modulo 3^α .

Given the congruences above, it would appear that the functions $c\phi_m(n)$ satisfy more partition congruences than do the functions $\phi_m(n)$. However, the primary goal of this paper is to prove a new congruence involving $\phi_3(n)$, not $c\phi_3(n)$. The proof is very elementary, similar to the proof given by Andrews for congruences (1.1) and (1.2) above.

2. A NEW CONGRUENCE INVOLVING ϕ_3 .

The congruence to be proven is the following:

THEOREM: For all $n \geq 1$,

$$\phi_3(3n+2) \equiv 0 \pmod{3}. \quad (2.1)$$

Proof: From Andrews [1; p. 12], we know that

$$\begin{aligned} \sum_{n=0}^{\infty} \phi_3(n) q^n &= \frac{1}{(q; q)_\infty^3} \sum_{m=-\infty}^{\infty} q^{3m^2} \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2} \\ &\equiv \frac{1}{(q^3; q^3)_\infty} \sum_{m=-\infty}^{\infty} q^{3m^2} \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2} \pmod{3}. \end{aligned}$$

The theorem is then proved provided we show that all coefficients of q^{3n+2} in the double sum above are divisible by 3. In order to get a contribution to q^{3n+2} , we must have

$$\begin{aligned} 3m^2 + n^2 &\equiv 2 \pmod{3} \\ \implies n^2 &\equiv 2 \pmod{3}. \end{aligned}$$

However, there is no integer n which satisfies this congruence. Hence, the theorem is proved. ■

3. CONCLUDING REMARKS.

It is interesting to note the “pairs” of congruences above, namely (1.1) and (1.2), as well as (1.4) and (2.1). Note that the case $\alpha = 1$ in (1.4) above is

$$c\phi_3(3n+2) \equiv 0 \pmod{3^3}.$$

Moreover, it is also interesting that the second pair involves an infinite family of congruences, while the first pair does not. However, thanks to empirical data which is easily calculated using the generating function for $c\phi_2$, we can conjecture the following family of congruences similar to (1.4) above:

CONJECTURE: For all $n \geq 1$,

$$c\phi_2(5^\alpha n + \lambda_\alpha) \equiv 0 \pmod{5^\alpha},$$

where λ_α is the reciprocal of 12 modulo 5^α . The first case of this conjecture is congruence (1.2) above.

REFERENCES

1. ANDREWS, G. E., Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, Volume 301, Providence, RI, May 1984.
2. KOLITSCH, L., A Congruence for Generalized Frobenius Partitions with 3 Colors Modulo Powers of 3, in: B. C. Berndt, et. al., ed., Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhauser Boston, Boston, MA, 1990, 343–348.

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be