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ABSTRACT. We consider the problem of testing the stability of regression parameters in
regression lines of different populations when some additional, but unidentified, data sets from
those populations are available. The standard test (Tg) discards the additional data and tests the
stability of the regression parameters using only the data sets from identified populations. We
propose two test procedures (T; and T,) utilizing all the available data, because the additional
data may contain information about the parameters of the regression lines which are tested for
stability. A power comparison among the tests is also presented. It is shown that T; always has
larger power than Tj. In certain situations T, has the largest power.
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1. INTRODUCTION. Consider the regression model
Yij = o +8i(x- X;) + €ijy 1=1,2,..k, j=1,2,..,m5 (1.1)

where the y;; are observations on the response variable, the x;; are observations on the predictor
variable, a; and g; are the regression parameters, and the ¢;; are the error terms, which are
unobserved random variables. It is assumed that the errors are independent, normally distributed
random variables with mean 0 and common unknown variance o2. For the model, o; + Bi(xij- X;)
is the regression line of the variable y on the predictor variable x for the itt group, «; is the y-
intercept when x = X;, and g; is the slope. Suppose we have m (m < k) additional data sets
corresponding to m regression lines whose model is given by

yij =ej t+ pi(xij -x) + €ij» i=k+1,..k+m, j=12,..n. (1.2)

We assume that the error termse;; in model (1.2) are independent, normally distributed random

variables with mean 0 and common unknown variance o2. It is further assumed that the m

regression lines in model (1.2) are an unknown subset of the k regression lines in model (1.1).
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However, we cannot identify the m regression lines associated with the additional data sets (y;;,
xij, i=k+1,...k+m, j=12,..,n;). We are interested in testing the null hypothesis Hy:aj = az=...=
ay; B1= B2=..= By against H,: either a; #+ ap or g; + By for at least one pair (i,i’), where i+ 1,
i,i'=1,2,...k, utilizing all the available data. The null hypothesis implies that all the k regression
lines in model (1.1) are coincident whereas the alternative hypothesis is that at least two of the
regression lines are different. The standard test (Tg) of Hy against H, using the k data sets (yj;,
Xij, i=12,...k, j=12,..,n;) is well-known in the literature and has diverse applications. A
biostatistician may be interested in testing the equivalence of regression lines for predicting the
systolic blood pressure using age as the predictor variable for four social groups. A test for the
stability of the regression parameters that generated the data sets is Hy: aj = a2=a3=a4; 81 =
Bo= B3= B4. If Hy is true, we use a single regression line based upon the four data sets for
predicting systolic blood pressure using age as the predictor variable, Klienbaum and Kupper [1}.
An economist might be interested in testing the equivalence of multiple regression models for
predicting the gross domestic product using labor and capital as predictor variables for different
time periods, Maddala [2].

In this paper we consider two tests (T; and T,) utilizing all the available data and make a
power comparison between these two tests and the standard test which is based solely on the k
data sets relating to the regression lines whose parameters are tested for stability. In Section 2 we
determine least squares estimates of the regression parameters to obtain the test statistics for the
problem. The noncentrality parameter of the tests is derived in Section 3. In Section 4 we derive
our proposed tests, T; and T,. We illustrate and compare the power of all three tests in Section
5.

2. LEAST SQUARES ESTIMATES. Consider the sum

k+m n

$0= % I (yj-&i-Ailxj -%))% 21)

i=1 j=1
where &; and £, are the estimates of regression parameters o; and g; (i=1,2,...k+m). The least
squares estimates of the regression parameters are obtained by differentiating ¢, partially with
respect to &; and #; and then solving the resulting normal equations for &; and #;. It can be shown
that the least squares estimates of a; and ; are given by

& = T yi/n (22)
i=1
and
n; o -2
Bi = jEI)'ij (x;j -Xi)/.El(Xij -%;)% (23)
= ]=

Then Ry2, the unconditional error sum of squares, is obtained by substituting &; and #; given by
(2.2) and (2.3) into 4. It can be shown that

k+m n;
R¢=t =
i1 0=

_2k+m2 )
i -Y)” - Ai* S, (24)
i=1 j=1 i=1

where
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n
S2 = T (%) i=12..k+m. (2.5)
j=1

The conditional error sum of squares under Hy, is obtained by minimizing

n; . k+m )
$1 = ‘El ,EI(Yij -8 -A(x -%))? +, ﬁ E (Y., -&; - Bi(x;; -X3)) (2.6)

with respect to &, £, &;, and 8; (i=k+1,...k+m).
The second sum on the right-hand side of (2.6) is minimized with respect to &; and #;

(i=k+1,...k+m) where &; and f; are defined, respectively, as in equations (2.2) and (2.3). The
least squares estimates of the regression parametersa and g are given by

k n; -
&= T yj/n= @7
i= 1] 1
k n _ k
B=1% T ylx-%)/TS? (2.8)
i=1 j=1 i=1
where
k
n= T n. 29)
i=1

The conditional error sum of squares under Hy is

k k k+m
Rf = ¢ E (y, -¥)?- 322 S2 + = E (y,j y,)2 zﬁ252. (2.10)
i=1 j= i=k+1j=1 =

The sum of squares for testing the null hypothesis Hy is

SSHy = R - R
k k
= I i 7%+ }319282 -2 5 s2,
= i=1.
k k
= T oG-y + 5 S2E6i-A)2 (2.11)
i=1 i=1
where
k k
f==x Sizﬁi/ z Siz. (2.12)
i=1 i=1

It is well-known in the literature that Ri? /o2 is distributed as chi-square with

k+m
n=n+ I n-2(k+m) (2.13)
i=k+1
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degrees of freedom and SSHy/02 is distributed as noncentral chi-square with 2(k-1) degrees of
freedom. When Hy is true, SSHy /02 is distributed as chi-square with 2(k-1) degrees of freedom.

Further, RiZ and SSHy are independent; for example see Kshirsagar [3].
3. NONCENTRALITY PARAMETER. Here we derive the expected value of SSHy under the

non-null case. It can be shown that

k k k k
,Elni %i-9)? = T lni(ai -a)? o+ _Blﬂi(f_i-?)2 + 2~21ni(°‘i @) -€), (3.1)
where
_k
&= T npj/n, (32)
i=1
k
€ = B e/m, (33)
i=1
k
€= T ng/n (34)
i=
Taking expectations of both sides of (3.1) we obtain
k k
E(_zlni(y—i -y)?) = _Elni(ai -a )2+ (k-1)02. (3.5)
i= 1=
Now
k k
E( T 8S?) = & SPZ(@2/S? +8%)
i=1 i=1
k
=ko2+ = ﬂiz Siz , (3.6)
i=1
and
k k k
E(ﬂ2 z Siz) =z Siz (02/ z Si2 +72 )
i=1 i=1 i=1
k
=02 +F2 £ §2, 3.7
i=1
where
k k
F= % S8/ £ S2. (3.8
i=1 i=1
Using equations (3.5), (3.6), (3.7), and (2.11) we get
3.9)

k k
E(SSHy) = 2(k-1)02 + T mje;-a)2 + T S2(8;-F)>.
i=1 i=1



TESTING THE STABILITY OF REGRESSION PARAMETERS 177

Since SSH/0? is distributed as noncentral chi-square with 2(k-1) degrees of freedom, it
follows from (3.9) that the noncentrality parameter is given by

k k
A= (1/02)[ ‘Elni(ai -a_)2 + 'SISiz ®; B (3.10)
i= i=

4. TEST PROCEDURES. The standard procedure for testing Hy against H, is an F-test based
upon the test statistic

Fo = (SSHo/2(k-1))/(R¢ /(n-2k)), (4.1)

where
k n _ k
Rf = £ T (y5-W)? - T AZS?. (4.2)
i=1j=1 i=1

See, for example, Kshirsagar [3]. The above test rejects the null hypothesis Hy if Fy >
F, 2(k-1),-2k and accepts Hy otherwise, where F, ¢ 12 is the upper 100« percentile point of the

F-distribution with f; numerator degrees of freedom (ndf) and f, denominator degrees of
freedom (ddf). We note that the standard test is based upon the k data sets (yj, Xjj, i=1.2,...k,
j=1,2,...,n;) and discards the additional data (yij s Xijs i=k+1,..k+m,j=12..n).

Consider the following test procedure (T;). Reject Hy if

Fy = (SSHo/2(k-1))/(R*/m’) > F, a1y 4.3)

and accept Hy otherwise. A comparison between Ty and T shows that both have the same ndf
but that the latter has larger ddf than Ty,. We further note that T; is based upon all the available
data. Under the non-null case, both test statistics have noncentral F-distributions with the same
noncentrality parameter A as in (3.10). Therefore F; will have larger power than Fy, Graybill [4].

When the m regression lines in (1.2) are an unidentified subset of the k regression lines in
the model (1.1), testing Hy against H, is equivalent to testing Hy: the k+m regression lines are
identical against Hy; at least two of them are different.

Following the procedure outlined in Section 2, it can be shown that the sum of squares for
testing Hy is

, k+m k+m
SSHy = £ mi@;-&) + I Sii-#)% 4.4)
i=1 i=1
where
k+m k+m
&= T ny, /T n, 4.5)
i=1 i=1

k+m k+m
g = ,Elsizﬁi/, 215i2 . (4.6)
1= 1=

The sampling distribution of SSHy/o2, when Hj is true, is noncentral chi-square with 2(k+m-1)
degrees of freedom and noncentrality parameter
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k+m k+m
X = (1/62)[ Eln;(ai-a)z + T SZ@;-8)%, @.7)
i= i=1
where
k+m k+m
e = L no;/ £, 4.8)
i=1 i=1
and

k+m k+m
B =% S?pi/ = S2. 49
i=1 i=1
We note that SSH can be obtained from SSHy by replacing k with k+m. When Hy is true, the
sampling distribution of SSHy/0? is chi-square with 2(k+m-1) degrees of freedom. Further, SSH,
and Ry? are independent.
We use an F-test (T5) to test Hy against H; based upon the test statistic

F, = (SSHY/R)/(R?/m), (4.10)

where f; = 2(k+m-1). We reject Hyif F, > F, ¢; > and accept Hg otherwise. When H, is true,

the sampling distribution of F, is noncentral F with f; ndf and n’ ddf and noncentrality parameter
)’. We use noncentral F-distribution tables to compute the power of the tests. The next section
illustrates and compares the power of these three tests.
5. POWER COMPARISONS OF THE TESTS. When Hy and H are not true the test statistics
(4.1), (4.3), and (4.10) follow noncentral F-distributions. The non-null distributions of the test
statistics Fy and F; have the same noncentrality parameter, A, defined in (3.10). The
noncentrality parameter for the non-null distribution of F, is A” as defined in (4.7). The ndf for
both Ty and T, is f; = 2(k-1). For T, the ndf is f; = 2(k+m-1). Tg has ddf f, = n-2k, while the
ddf for T1 and T, is n’ as defined in (2.13).

Tables 1, 2, and 3 illustrate the powers of Ty and our proposed tests, Ty and T,. We chose
e = 0.05 and situations involving k = 4 regression lines. The number of data sets considered from
unidentified populations is m, where 1< m< k. For simplicity we use equal sample sizes (n; = 10)
for the k identified populations and equal sample sizes (n}) for the m unidentified populations.
From our earlier notation n} = ny,;(i = 1,..,m). Tables 1, 2, and 3 differ in the magnitude of nj.

In the tables we denote the noncentrality parameter for the power of test T; as A;. The
power of each test is a function of A; and the relevant degrees of freedom. As indicated above, Ao
=211. Form =k, each); is a specific value. For m < k, 2o and A, are (the same) specific values,
but A, varies depending upon which unidentified populations produce the m data sets. For this
reason we calculate the tests’ powers for selected sets of k regression lines and values of S;2. The
differences between the parameters of these lines together with S;2 and o2 affect A;. The
parameters of the k lines, S; , and 02 were chosen to produce the three values indicated for A g, so
that the power of T is about .25, .5, and .75. If Ty has very small power, then additional data
provide very little improvement. Conversely, when the power of T is very large, there is little
need for improvement with additional data.

Examinations of the tables produce the following observations. The powers of T are the
same in all three tables because this test ignores the additional data sets. For a given)g (and ;)
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the power of T, is always greater than the power of Ty consistent with Graybill’s conclusion [4]
that for a given ndf the power of the test increases as the ddf increases. Also, in each table the
power of T increases as m increases, because the ndf remains at 2(k-1) while the ddf increases by
n;-2. Likewise, for each value of m the power of T; increases from Table 1 through Table 3
because the ddf increases as a result of the n; increasing from S to 7 and finally to 10.

The power of T is heavily influenced by the choice of regression lines for the additional

data when m < k. In each table the power of T, does not consistently increase as m increases.
The increases in A, and ddf are sometimes offset by the increase in f; of 2m. For each value of m
the power of T, generally increases from Table 1 through Table 3 because of the same increase in
ddf as for Ty, But as Table 1 indicates, for small n] relative to n; the power of T, may be lower
than the power of Ty, and is seldom much better than the power of T;. In Table 2 when the nj
approaches n; in size, improvements in the power of T, over the power of T, are noticeable.
Table 3 indicates that when the nj equal n;, T, is superior to the power of T; except occasionally
for small m.
6. APPLICATIONS. Using additional data from unidentified populations improves the power of
the test for stability of the parameters in k regression lines. The only requirement is that the error
terms of the regression lines from all populations have a common variance. The power of our
proposed test, Ty, is always greater than the power of the standard test, Ty. If m, the number of
data sets from unidentified populations, is close to k and if the nj are near the n;, then T, can
produce a larger increase in the power than Ty. If m is small or if nj is small relative to n;, then
T may be a better choice than Tj.

noncentrality parameters Power of the tests

m YIRS Ay To T, T,

4 4.454 6.681 2502 2622 .2409

4 9.085 13.627 5016 5252 .5069

4 14.866 22299 7500 7750 7744

3 4.454 5.707to 6.440 2502 2598 2233 to 2518
3 9.085  12.012to 12.770 5016  .5205 .4803 to .5105
3 14.866  19.191to 21.353 7500 7701 .7299 to .7858
2 4.454 4.895t0 6.240 2502 2570 2115 to .2684
2 9.085  10.648 to 12.055 5016 5151  .4645t0.5243
2 14.866  16.601 to 20.564 7500  .7645 .6944 to .8050
1 4.454 4.650to 5.248 2502 2539 2256 to .2536
1 9.085 9.784 to 10.405 5016  .S089 .4738 to .5029
1 14.866  15.637 to 17.399 7500 7579 7139 to .7687

Table 1

Power of the F-tests fora =.05 k=4 n; =10 n; =5
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(1]
(2]
131
4]

noncentrality parameters Power of the tests

m Ags A1 A2 To Tl T2

4 4.454 7.572 2502 2674 .2836

4 9.085 15.444 5016  .5353 5914

4 14.866 25.273 7500  .7851 8522

3 4454 6.178 to 7.228 2502 2643  .2481t0.2913
3 9.085  13.127 to 14.217 S016 5294 5388 to .5810
3 14.866  20.826 to 23.919 7500 7792 7874 to .8529
2 4.454 5.071to 6.954 2502 2606 .2228 to .3057
2 9.085  11.287to0 13.243 5016 5221 .5014 to .5832
2 14.866  17.295 to 22.843 7500 7718 7271 to .8616
1 4.454 4717to 5.519 2502 2560 .2310 to .2692
1 9.085  10.022 to 10.854 5016 5131 4900 to .5287
1 14.866  15.900 to 18.261 7500 7624 7283 t0 .7977

Table 2
Power of the F-tests fora = .05 k=4 n; =10 nj =7
noncentrality parameters Power of the tests

m A0, 21 A2 'ro T T,

4 4454 8.908 2502 2730 3498

4 9.085 18.170 5016  .5459 7024

4 14.866 29.732 7500 7955 9270

3 4.454 6.867to 8.404 2502 2695 .2851to0.3522
3 9.085  14.776 to 16.373 5016 5393 .6189 to .6756
3 14.866  23.220 to 27.749 7500 7891 .8539 to .9207
2 4.454 5.336to 8.026 2502 2650 .2395 to .3632
2 9.085  12.230 to 15.025 5016 5306 .5540 to .6643
2 14.866  18.336 to 26.262 7500 7805 .7703 to .9210
1 4.454 4.807to 5.883 2502 2589 .2383 to .2909
1 9.085  10.343 to 11.461 5016 5188 .5119to.5633
1 14.866  16.254 to 19.425 7500 7683 .7470 to .8330

Table 3

Power of the F-tests fora = .05 k=4 n; =10 nj = 10
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