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1. INTRODUCTION.

Let A be a Banach algebra. It is an interesting and difficult problem to determine whether A
is Arens regular. Many papers have been written on this subject. For example, see (2], [5], (9], [10],
[11] and [12]. In particular let A be a B*-algebra. It is well known that A is Arens regular.
However, it is not easy to prove this result. There are many different proofs of this result. For
example, see [4], [5], and [8].

In this paper, we give characterizations for A to be Arens regular. It follows from this result
and a result of C.A. Akemann that a B*-algebra is Arens regular. We also show that if 4 is a
Banach algebra which is Arens regular, then any closed subalgebra of A is also Arens regular.

2. NOTATION AND PRELIMINARIES.

Definitions not explicitly given are taken from Rickart [7].

Let A be a Banach algebra and let A* and A** be the conjugate and second conjugate spaces of
A. We will denote by = the canonical embedding of 4 into A**. The two Arens products on A**
are defined in stages according to the following rules (see [3]). Let z,y € A, f € A* and F,G € A**.

Define foz by (foz)(y) = f(zy). Then foz € A*.

Define Gof by (Gof)(z) = G(foz). Then Gof € A*.

Define FoG by (FoG)(f) = F(Gof). Then FoG € A**.

A** is a Banach algebra under the Arens product o, and we denote this algebra by (4**,0).

Define zo’f by (z0'f)(y) = f(yz). Then zo'f € A*.

Define fo'F by (fo'F)(z) = F(zo'f). Then fo'F € A*.

Define Fo'G by (Fo'G)(f) = G(fo'F). Then Fo'G € A**.

A** is a Banach algebra under the Arens product o’ and we denote this algebra by (4**,0").

Both of the Arens products extend the given multiplication on A when A4 is canonically
embedded in 4**. In general, o and o are distinct on A**. If they agree on A**, then A is called
Arens regular.

In this paper, all algebras and linear spaces under consideration are over the complex field C.
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3. ARENS REGULARITY FOR BANACH ALGEBRAS.
Let A be a Banach algebra and f € A*. Define Ly A—A* by

Lf(.‘t) = foz (z € A).

Then L f is clearly a continuous linear operator from A to A*.
For each F € A**, define F.Lf by

F.L((z) = F(Lg(z)) = F(foz) = (Fof)(z).

Then Flge A*. Define L} :A**—A* by

L}(F) =F.Ly=Fof (F € A*).

Then L} is clearly a continuous linear operator from A** to A*.
For each F € A**, define F.L} by

F.L}(G) = F(L}(G)) = F(Gof) (G € A**).

Then F.L} € A***. Finally, we define L}‘:A“-*A*" by

L}*(F) = F.L} (F € A**).

Then clearly L}‘ is a continuous linear operator from A** to A***.
THEOREM 1. Let A be a Banach algebra. Then the following statements are equivalent:
(1) Ais Arens regular.
(2) For each fe A*,L}*(A") is contained in x(A*), where x(A*) is a subspace of A***.
(3) For each f e A* L 5 is weakly compact.
(4) Let Fe A** and {z,} a bounded net in A. If x(z,)—F weakly, then fo'F is a weakly limit point
of {foz,}.
PROOF. (1) = (2). Assume (1). Let F,G e A**. Then L}“(f) = F.L} and by (1)

F.LYG) = F(L}(G)) = F(Gof) = (FoG)(f) = (FIG)(f) = G(fo'F) = x(foF)(G)-

Therefore F.L} = n(fo’F) € 7(A*) and so L}*(F) = F.L} € x(A*). This proves (2).

(2) = (3). This follows immediately from [6; p. 482, Theorem 2].

(3) = (4). Assume that L 7 is weakly compact. Let F and G € A**. Then by Goldstine’s theorem
[6; p. 424, Theorem 5] there exists a bounded net {z,} in A such that x(zq)—F weakly. Similarly,
there exists a bounded net {vg) such that (yg)—G weakly. Since L f is weakly compact, we can
assume that L f(:l:a)—~g weakly for some g € A*. Hence foz,—g weakly. Therefore

lim G(fozy) =G(g) = lgm r(yﬂ)(g) = l;"m lim x(yﬂ)(foxa)
= lim lim f(zqu) =lim lim (ygo'f)(za)
= I;;m lim r(za)(yﬂo'f) = I;;m F(yﬂo'f)
= lim (foF)ug) = lim *(ug)(fo'F) = G(foF).

Therefore fo'F is a weak limit point of {for,}. This proves (4).

(4) = (1). Assume (4). Let F,G € A**. Then by Goldstine’s theorem, there exists a bounded net
{zo} in A such that x(z4)—F weakly. Since fo'F is a weakly limit point of {foz,}, we can assume
that

G(fo'F) = lim G(fozy) =lim (Gof)(zq) =lim %(24)(Gof) = F(Gof) = FoG(f).
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Therefore (Fo'G)(f) = G(fo'F) = FoG(f) and so A is Arens regular. This completes the proof of the
theorem.

COROLLARY 2. Let A be a Banach algebra such that each continuous linear map T of 4 into
A* is weakly compact, then A is Arens regular.

PROOF. Since each Ly(fe A*) is weakly compact, A is Arens regular by Theorem 1.

Let A be a B*-algebra and B a Banach space such that B* is a W*-algebra. Then by [1; p.293,
Corollary I1.9], any continuous linear map T of 4 into B is weakly compact. Therefore it follows
from Corollary 1 that A is Arens regular. The property that “any continuous linear map T of 4
into B is weakly compact” is a very strong one. In order for A to be Arens regular, we need only to
show that L is weakly compact for all f in A*. Therefore, a simple proof for a B*-algebra to be
Arens regular may exist.

4. SUBALGEBRAS OF A BANACH ALGEBRA WHICH IS ARENS REGULAR.

Let A be a Banach algebra which is Arens regular. It is well known that a subalgebra of 4
may not be Arens regular. In fact, let M be the group algebra of an infinite abelian locally compact
group. Then M is an A*-algebra. Let A be the completion of M in an auxiliary norm. By [5; p.857,
Theorem 3.14] M is not Arens regular. Since 4 is a B*-algebra, 4 is Arens regular.

Let A be a Banach algebra and M a closed subalgebra of A. For each f € A*, we define f,, by
fyle)=f(z) for all ze M. Then fy € M*.

THEOREM 3. Let M be a closed subalgebra of A. If A is Arens regular, then so is M.

PROOF. Let f € M*. Then there exists some f € A* such that }M = f. Let F e M**. Define F
by

F(9) = F(gpy) (g€ 4*).

Then it is clear that F € A**. Since A is Arens regular, by Theorem 1, L is weakly compact on A.
Let {z,} be a bounded net in M, then L},(za) = foz, — ¢ weakly for some g€ A* Since
(]‘oza)M = foz, € M*, it follows that

F(gpp) = F(g) =lim F(fozy) =lim F((fozy)py) = lim F(fozy).

Therefore L f(’-'a)—‘g um Weakly and so by Theorem 1, M is Arens regular. This completes the proof.
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