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ABSTRACT The chaotic dynamics of the map ¢(x) = (fx + a) (mod 1) are studied using Parry's 3-
expansion. It is shown that for 1 < f<2,a >0, the number of periodic points of period n is O(ﬂ" )
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1. INTRODUCTION
When f is an integer, the dynamics of the map@(x) = (fx + @) (mod 1) are rather simple. ¢ is
topologically conjugate to the shift automorphism c on the space . ﬂ{s,s2~ -8 € {o,1,---.8- l}}, which,

in the terminology of Devaney (1989), implies that it is chaotic (see Def. 2 below). The number of
periodic points of period n is A", because the period points of  on . p are precisely the sequences of
the form 5,---5,, 5, €{0,1,---,4-1}. And there is a unique invariant Borel measure, differentiable on
[0,1]: the characteristic function z{¢ 1) (Parry, 1960).

When B is not an integer, things are not quite so tidy. There is still an invariant Borel measure
differentiable on [0,1] (Sinai, 1981), although it is zero almost everywhere. However, although the map
may still be proved chaotic by demonstrating a conjugacy with a shift map, the space A on which this

shift map acts is somewhat problematic. We will deal only with the case 1 < <2, although most of the
results generalize straightforwardly. In this case, an analysis of Ag reveals that the number of periodic
points of period n is asymptotically proportional to #(n), the number of binary sequences ss;-:-s, so
that:

ﬂ'lsl+~-+ﬂ'”s,, <1

Flsy s, <1

Fls, <1
If X is a random variable on R, with probability density f so that supp(f) = [0,1], let yf denote the
probability density of ¢(¥). Then, we show that /" 20(0) =4 "#(n) It follows that



144 B. GOERTZEL, H. BOWMAN AND R. BAKER

#(n) = ()(,8"), since lim ¢ X10,11(0) exists by the ergodicity of the mapping ¢ (Sinai, 1981) This resul
n—wo

is new and apparently cannot be obtained from standard methods such as kneading theory (Collet and
Eckmann, 1980) From here on, we will assume 1 < <2, a>0

2 INVARIANT MEASURES

Where a =0, Parry (1960) has studied the invariant measure of ¢, and shown that it is umque In
general, any invariant measure of ¢ is characterized by a Frobenius-Perron operator .

LEMMA | If0<x<I, then yf(x) =/T'[f(ﬂ"x—/T'a)+f(ﬁ'x—ﬁ”'a+p*')+
S(B'x-p'a+2p")]

PROOF. PlasyX<x)=P(f'a-flasX<f'x-f'a)+
PBla-fla+f' < X<f'x-f'a+f') +P(B'a-f'a+2B < X<f'x-f'a+28")

In terms of densities, this means
ﬂ-lx_ﬂla ﬂ-lx_ﬂrla,ﬂ—l ﬂ"x—ﬂ"a*lﬂ“

fwrar=""[rod+ [fode+” [ f(0)ar
a Fla-fla Fla-fla-g! Fla-flav2p!

Differentiating, one obtains the lemma.

A measure fis invariant under ¢ if and only if it is a fixed point of the operator y (see Lasota,
1973) From this equation, one may deduce certain simple properties of /. For instance, it is easy to

see thatif =0, /()=4"1(8") =22 10

Next, let us derive a formula for the »'th iterate of v
LEMMA 2. ¢ f(x) =/T"§:lf(ﬂ"'x—ﬁ"a+ a™), where {af"’,m,a‘:':’} is the set of all
expansions §~ lsl +f4 232 ++ff "l.;,, so that s, e{O,l} and
Flx+f s+ 2+ -+ s, <1

Bt gl 4o, <1

I'8 Levg ls,, <1
PROOF. Lemma 1 takes care of the case 7 = 1, so we may proceed by induction. Assume that
a =0 and that the statement is true for n=k —1. Then

= [ g+ Ao =
Bl Sl vt ) s
/r**'fgf(ﬁ**'(ﬂ'x+/r')+af"")]

= BB k) f ()=
FrEr(Ft v a).

This shows that the statement is true for n=k If a@ # 0, the lemma follows from the observation that,
where y is the operator corresponding to ¢(x) = (/Jx +a) (mod 1), and v is the operator corresponding

to ¢(x) =fx (mod 1), v,/ (x) = yf (x - a).
This lemma permits us to estimate asymptotically the number #(n) defined above. The problem
of determining #(n) for arbitrary » is apparently unsolved and seems to be very difficult.
THEOREM 1 #(n) = 0(8")
PROOF Take a=0 y'f(a)=f"% f(a\”) Take f = z0y), then ¢/ f(a)= B #(n) V"
1=1

converges to an invariant measure, because v is ergodic (Sinai, 1981) Thus #(n) = O(/?")
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3 APPROXIMATION WITH INTERVAL MAPS

Computer simulations have played a large role in the development of the theory of chaotic
dynamical systems. One way to simulate the probabilistic behavior of a chaotic map like ¢ is to
approximate the map by a sequence of interval maps.

T
Given a measure f so that supp(f) =[0,1], let P/(”) = p (Pl(”),m,l’"(")) , where

i/n iln
P = j'f(x)aﬁr Let v, be the nx n matrix defined by (y/,,P(")) = j wf (x)dx
-1)/n ! -1
n

LEMMA 3. 3 >0 sothat (%) >0 foralli,;.
y

PROOF. ( l/‘" )U is the probability that, after & iterations of ¢, the image of a point selected from a

. . - .. -1 . . .
uniform distribution on [f——li) isin |:'—— ,i) Because ¢ is ergodic, for any two open intervals U and
n n n n
V there is some & so that the Lebesgue measure of y(U)V is nonzero

THEOREM 2 y,, has a unique fixed point A"
n
PROOF Since |w,|, =1, P(w,)<1. And since zl( A, )l.l =1, 1 is an eigenvalue of A with
j =
corresponding eigenvector (1,---,1), and hence 1 is an eigenvalue of 4, and o(4,)=1. According to a
standard linear algebra result, Lemma 3 implies that the multiplicity of 1 is I Thus there is a unique
eigenvector PM corresponding to the eigenvalue 1.
Given this result, it is easy to see that these P converge to the invariant measure. For any

x €[0,1], let /,,(x) denote the interval [ﬂi) which contains x. Let S” denote the set of all step
n'n

functions constant on each interval [';]-L) Let 7" be the element of S™ naturally induced by A"
n n

Then we have
THEOREM 3. lim f™ = f.

19

These results show that the interval maps y,, are qualitatively faithful representations of y. The
chaotic behavior of ¢ is necessarily absent from any discrete approximation, but the probabilistic
implications of this chaos are accurately mirrored.
4. DYNAMICS

DEFINITION 1. Where s = s5;---5,,--- is a binary sequence, let
Bg(s) =ﬁ'lsl +,8‘2s2+~-ﬂ'"s,,+--- Let Fg be the set of all 5= s;---s, or s =515, so that Bg(s) 21
Let Ag be the set of all s=515,--- 50 that spSg+1°*Skam € Fp, SeSk1°+ € Fpg, for any k and ¢.

Fp is the set of all "forbidden subsequences", and Ag is the set of all sequences containing no
forbidden subsequences.

LEMMA 4. For each x €[0,1] there is a unique binary sequence s € Apg so that Bg(s) = x.

PROOF  Existence is clear, one forms an expansion By exactly as one forms an expansion in an
integer base. To show uniqueness, assume x = Bg(sy5y-+- Sp_1 15,41+ and
x= Bp(slszn-s,,_10s;,+,s,’,+2---) Then the second expansion is not in Ag

Chaos may be defined in many different ways Here we will adopt the topological approach found
in Devaney (1989)

DEFINITION 2 A function r [0,1] — [0,1] is chaotic if i) it is topologically transitive,
i) its periodic points are dense, iii) it is sensitive to initial conditions

LEMMA 5. ¢[0,1]— [0,1] is topologically conjugate to the shift map o 45 — A4, where
o(5y5)53-++) = 5583+

PROOF. Follows from Lemma 4 by standard arguments
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THEOREM 4 ¢ is chaotic on [0,1] > [0,1]

PROOF. i) ¢ is topologically transitive because, where {w;w,w5.,---} is an enumeration of
Ag, s=w 00w 00w300--- 1s in Ag and Bp(s) is a dense orbit. ii) The set of periodic points in ¢ of
period n is {B,(s).s €4, s=5,-5,s {0, l}} For example, everything of the form B,,(W))
is periodic, and these points are clearly dense. iii) Follows from standard arguments

THEOREM 5 Ifa and B are rational, all periodic points of ¢ are rational.

PROOF. if a =0, a little algebra shows that all periodic points are of the form
[s,ﬂ' Lt g ]/[ﬂ" - l], s, €{0,1}. The general case follows similarly

These results can also be obtained by more conventional methods (Collet and Eckmann, 1980).
However the present techniques tell us considerably more about the periodic points of ¢ than Theorem 4
requires. Let Per, (@) denote the set of periodic points of ¢ of period n. For a =0 and B integral, it is
obvious that Card[ Per,(¢)] = 8". This result cannot be directly generalized to the case of nonintegral B,
since Card[ Per, (#)] is integral but 4" is not. However, the following result is an asymptotic

generalization.
THEOREM 6. Per,(¢) = O(f")

PROOF: {B,(s):s € 4,,5=5-5..5 €{0,1}}  Per,(4), but
Per,(¢)c {Bp(s):s €4y, 5=5-5,,5, e{O,l}}. So #(n-2)< Card[Per,,(¢)] <#(n), and the result

follows fronﬁ Theorem 1.

NOTE: Since submitting this paper, the authors have become aware of unpublished work by Leo Flatto
which contains the result Card[Per,,(¢)] = O(ﬂ") for the case a=0. Flatto's techniques are combinatorial

rather than dperator-theoretic, and apparently cannot be extended to the case @ = 0. We would like to
thank J. Lagarias for informing us of Flatto's work.
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