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ABSTRACT. Let GF(q) denote the finite field of order ¢ = p€ with p odd and prime. Let M
denote the ring of m x m matrices with entries in GF(g). In this paper, we consider the problem
of determining the number N = N(n,m, B) of the n-th roots in M of a given matrix B € M.
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1. INTRODUCTION.
Let GF(q) denote the finite field of order ¢ = p® with p odd and prime. Let M = My,
(¢) denote the ring of m x m matrices with entries in GF(g). In this paper, we consider the
problem of determining the number N = N(n,m, B) of the n-th roots in M of a given matrix
B € M; i.e., the number of solutions X in M of the equation
=B (1.1)

Our present work generalizes a recent paper of the authors [1] in which the case N(n,2.B)
was considered. If B denotes a scalar matrix, then equation (1.1) is called scalar equation, type
of equations that has been already studied by Hodges in [3]. Also, if B denotes the identity
matrix and n =2, then the solutions of (1.1) are called involutory matrices. Involutory matrices
over either a finite field or a quotient ring of the rational integers have been extensively
researched, with a detailed extension to all finite commutative rings given by McDonald in [5].

2. ESTIMATING N(n,m,B).

Let GF(q) denote the finite field of order ¢ = p® with p odd and prime. Let M = My, »x m(q)
denote the ring of m xm matrices with entries in GF(q) and let GL(g,m) denote its group of
units. We now make the following conventions:

(a) n and m will denote integers so that 1 <m and 1 <n < g,

(b) N(n,m,B) will denote the number of solutions X in M of the equation

X"=B
(c) g(m,d) will denote the cardinality of GL(¢%,m). Thus
m—1 4 4
gm,d) =T (¢™~-q¢)

i=o

2 m

= ¢im 'H1(l -q7")
? =

We also define ¢(0,d) = 1.
Our first lemma is a result given by Hodges in ([3], Th. 2).
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LEMMA 1. Suppose E(z) is a monic polynomial over GF(q) with factorization given by
E(z)=Fh Fhe. .. ph

where the Fi are distinct monic irreducible polynomials, hi >1 and degFl- = di fore=1,2,---,s
Then the number of matrices B in M such that E(B) =0 is given by

g(m,1 Z‘I_a(p) H H gK,'j,d,')_l

1=1j=
where the summation is over all partitions P = P(m) defined by
h,
m= Zd z gk, Kk, >0
=1 j=1
and a (P)= Z': db(P) where b,(P) is defined by
1=1
h, h,
bl(P) = Z k?u (u - 1) + 2u k:u Z kuy
u =1 v=u+1l

LEMMA 2. Let w denote a primitive element of GF(q). Let r € GF(gq)* = GF(q)— {0} and

write r = w' for some t, 1 <t < ¢—1. Assume n divides ¢ — 1 but 4 is not factor of n. Then

m?

m m q

where the summation is over all partitions P = P(m) defined by

(%t)k k>0
'( ), ="

PROOF. Let D denote the greatest common divisor of n and ¢. Then

ED _t_D
z"—w'=(zP| —|wD

(q 1)
We also see that w D does not belong to the set of powers GF5(q) = {z*:z € GF(q)} for all

prime factors s of 3. Hence, by ({4], Ch. VIII, Th. 16), each factor h,x) is irreduciblé over
GF(q)[z]. Therefore, Lemma 1 with E(z) = z" — w' gives

D -1
N ) =s(m1) 5> 1T o () (21)
P i=1

where the summation over all partition P = P(m) defined by

Hence,
m? T -1
q 'Hl(l—q )
N(n,m,rl)=Y" =
P %2 k? n kt -5,
¢'=1 I [T a-¢ D)
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and

P 5 i lc,2 n k, -
¢ =t Il Tl a-¢P)
i=1j=1
2
s =g
P i E

>y ¢™g-H"
P

REMARK 1. If r™ = w'™ ¢ GF"(q), then n does not divide tm and the number of partitions
P is zero. Thus, N(n,m,rl) = 0.
REMARK 2. If r=w?"!=1and 1 <n < g, including 4 as a possible factor of n, then one

can obtain 2

Zq"'<Nnml)<Z —1)"'

LEMMA 3. 3 (g=1)™ < N(n,m,0) < E(—q_mw
P P\

where P denotes all partitions P = P(m) defined by

m= Z Jk,, k,>0
j=1
PROOF. Applying Lemma 1, with E(z) = z", we obtain
N(n,m,0) = g(m,1) Z q =P H g(k, 1)1
j=1
where the summation is over all partitions P = P(m) defined by

m= Z Jk,, k,>0
j=1

n
and b(P)= ) [kﬁ(u — 1)+ 2uk, Z k } Therefore,

u=1 v=u+1
¢ M (1-q79
—_— 1=
(a) N(n,m,o)_g — - o n r
q( )q|=l H H (l_q—J)
i=1j=

where

i=1 u=1 v=u+1 1=1

P+ Y K= 3 [k.u(u—1)+2uk.-u ¥k .v]+ 3 KE>m.

We also see that i Z S q . Thus,
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™ ( g\ Pl
N(n,m,0) < |l = —
w03 4 (1) = 5 67

2
R e
- n
P spP)+ L &
q 1=1

2
e -1
n3
qu(P)+m+|§lk'
>y (¢-
P

Now we will consider a nonscalar matrix B. We start with the following

LEMMA 4. Let B denote a m x m matrix over GF(q) with a minimal polynomial fg(z).
Let fB(:c)=f';‘(:c)fg’(a:)- . ff.'(z) with deg(f,) = d, denote the prime factorization of fpg(z).
Assume that B is similar to a matrix of the form

diag (C(fY1), - - -,C(f4) - -, C(f¥), - - -, C(fir)
k, k,

where C( f ?) denotes the companion matrix of f :

Let f,(z")= I] F,J(x) denote the prime factorization of f,(z") for :=1,2,---,r. Let D,

denote the degree of F,(z)for j=1,2,- - -,a, Then
H y(k.,d )
S 11, T o(R,, D)

where the summation is over all partitions P = P(a,, D;,d,, k,) defined by

D Z Ru : n Rn] 2 0
j=1
fori=1,2,---,r
PROOF. If T" = B then fg(T")=0. Thus the minimal polynomial of T divides fpg(z") and
T is similar to a matrix of the form

diag(E\,E,, - - -, E,) (2.3)

where . b b b. b
E; = diag(C(F}y), - - -,C(Fdl, e, C(F,-('l‘), .- ',C(F,-('“))
Ry R,

1a;

with C(F f}) denoting the companion matrix of F f} So, we have a partition P = P(a;, D,,d,,k,)

defined by a

D, Y R, =dk, (2.4)
=

fori=1,2,- - -,r. Therefore, J

Nom 51 35 J2omio

where com(H)) = {X € GL(g,m): XH = HX} and the summation is over all partitions P defined
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by (2.4).
Now using the formula for | COM(H)| given by L.E. Dickson in ([2], p. 235) we obtain
11 g(k..d,)
N(n,m,B)< ¥ . -=01'
P n‘ n]g(Rl]’Dt)
1= )=

This completes the proof of the lemma.

REMARK. If T is similar to a matrix of the form given in (2.3), then T" may have
elementary divisors of the form fiC'(X ) with C, < b,. This possibility is the main problem to get
an equality at (2.2).

LEMMA 5. Let B denote a m X m matrix over GF(q) with minimal polynomial fg(z). Let
Foz) = £1(2)f5%z) - - - fir(z) with d, = deg(f,) denote the prime factorization of fp(z). Assume
m =3 bd, Then

1=1

N(n,m,B)<n"<n™
Further, N(n,m,B) =n™ if and only if f,(z) = ¢ —a, with a, e GF"(¢)for: =1,2, - - - ,r =m.
PROOF. With notation as in Lemma 4, m= )f: bd, implies k,=k,= .- =k =1
Therefore, if T" = B then D, =d, for all t =1,2,- - -,r axi(Tl
N(n,m,B)< ) 1
P

where the summation is over all partitions P defined by

a‘
Z Rq:L R:
i=1

,20

fort=1,2,- - -,r. Thus, r
N(n,m,B) < H a,>n"
1=1

Now if N(n,m,B)=n"™, then r =m. So, each polynomial ff'(:c) must be linear so that
f.(z") splits as a product of n distinct linear factors. Hence, f,(z) =z — a, with a, € GF"(q) for
i=1,2, - -,r=m. Conversely, if f,(z) =z —a, with a, € GF"(q), then

Q! diag (ey,eq, - - "rem) @ =B
for some matrix @ in GL(q,m) and for all e, in GF(q) such that e} =a, for :=1,2, - -,r.
Therefore,
N(n,m,B)=n"™.

COROLLARY 6. If B = diag(by,by, - - -,b,,) with b, # b, when i # j, then

N(;l‘,rh,B)z{nm ifb,GGF"(q) fori=1,2,---,m

0, otherwise

LEMMA 7. Let B denote a mxm matrix over GF(q). Assume that the minimal
polynomial of B is irreducible of degree d <m. Then, either N(n,m,B)=0 or
N(n,m,B) > (qd —1)™/,

PROOF. Let fg(z) denote the minimal polynomial of a m xm matrix B over GF(q).
Assume fpg(z) is irreducible of degree d <m. Thus, m =rd for some integer r>2. Let
fg(z") = Fy(2)Fy(z)- - - F,(z) denote the prime factorization of fg(z") and let D denote the
degree of each of the factors F(z) for i =1,2,- - -,a. Assume N(n,m,B)>0. Then T" = B for
some matrix T that is similar to a matrix of the form

diag (C(Fy), - - -,C(Fy)- - -, C(Fy), - - -,C(Fa))
R, R,
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where C(F,) denote the companion matrix of F,(z) fori=1,2, - - - a.
Therefore, | COM(B)|
N(n,m,B) > TCOM(T)|
r
¢ I (1-q~%)
S _ j=1
" p S rRa K
q 1=1 H H (1 —q - DJ)
i=1lj=1

2
qdr (1 _q-d)r

a
DY R

q i=1

\%

" gt -1y
(B — 1
B

g™ g1y

q

fm>d

> (qd _ l)m/d.

We are ready for our final result.

THEOREM 8. Let B denote a m x m matrix over GF(q) and let fg(z) denote its minimal
polynomial. Let fg(z)= f’{l(z) fgz(z) . fﬁ'(z) with deg(f,) = d, denote the prime factorization
of fp(z). Assume B is similar to a matrix of the form

diag (C(f}1), -+ ,C(F) - - . CU), - - -, CU)
k, k,

where C( ff') denotes the companion matrix of f?'.
a

Let f,(z") = ﬂ F, () with deg(F,,) = D, denote the prime factorization of f,(z") for
i=1
1=1,2,---,r. Then

<n' ifk,=1fori=12---,r
N(lem,B) =n" ifd;=b=k;=1landae,=nforz=1,2,---,r

T
either, 0 or > [[ (¢ —1)*if b, = 1,k,> 2 and D, | k,d,
i=1
fort=1,2,--.,r.
PROOF. Apply Lemmas 5 and 7 and Corollary 6.
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