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ABSTRACT. In this paper we examine optimization problems involving multidimensional

nonsmooth integral functionals defined on Sobolev spaces. We obtain necessary and sufficient

conditions for optimality in convex, finite dimensional problems using techniques from convex

analysis and in nonconvex, finite dimensional problems, using the subdifferential of Clarke.

We also consider problems with infinite dimensional state space and we finally present two

examples.
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1. INTRODUCTION.

The importance of the problem of minimization of a multidimensional integral

functional defined on a Sobolev space, is well documented in the books of Ekeland-Temam [3]
and Ladyzhenskaya-Uraltseva [15]. Various problems in calculus of variations, optimal control

of distributed parameter systems and mechanics involve such a minimization.

In this note we obtain some necessary and sufficient conditions for the existence of a

minimum or e-minimum of an integral functional defined on a Sobolev space. However

contrary to most of the works in the literature, we consider nonsmooth integrands. Using

concepts and techniques form nonsmooth analysis, we are able to obtain necessary and

sufficient conditions for optimality in finite dimensional, convex problems (see theorem 3.1 and

corollary I), in finite dimensional nonconvex problems (see theorem 4.1) and in infinite

dimensional problems (see theorem 5.1). Finally we present two examples illustrating the

applicability of our results.

2. PRELIMINARIES.

In this section we briefly recall some of the basic notions and facts from nonsmooth

analysis that we will need in the sequel. For more details we refer to the works of Clarke [2],
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Ekeland-Temam [3] and Rockafellar [7].

Let X be a real normed space and X" its dual. consider any function

f:Xff =U{ +}. The conjugate of f(.)is the function f’:X’--} defined by
f*(x*)=sup{(x’,x)-f(x):x X}. Here (-, .) denotes the duality brackets for the pair

(X,X*). It is clear from this definition that for all x’ X’, we have (x’,z) f’(z’)+ f(z).
This inequMity is known as the "Young-Fenchel inequMity’. Given a proper convex function

f:X (proper meing that f(. )is not identicMly + ), the convex subdifferential of f(. ),
is the generally multivMued mapping Of:XX" defined by Of(x)= {x’ X’: (x’,y-x)
f(y)- f(x) for M1 y X}. The elements of Of(z) are cMled subgradients of f(. at x. It is

cle that Of(x) is Mways a closed, convex, maybe empty subset of X’. Let C be a closed

convex subset of X and let c(’) be its indicator function; i.e. c(X)= 0 if x C, +
otherwise. Then Oc(z) # if and only if z C and Oc(X) Nc(x) {z" X’:(x’,y- z) 0

for M1 y C}, the normal cone to C at x. If C is affine space parallel to a subspace V, then

Nc(x V If f(. is Gateaux differentiable at x, then Of(z)= {v f(z)}. Also using the

subdifferential, we can have the following generalization of a well known optimality condition

concerning the minimum of f(-). So for a proper, convex function f(. ), the minimum (global)
of f(.) over X is attained at xX if and only if 00f(x). Also it is easy to check that

x’ Of(x)if and only if f(x)+ f*(x*)= (x’,x)("Young-Fenchel equality"). More generally,
given any e 0 and a proper convex function f(. ), the e-subdifferential of f(-) at x is defined

by O,f(x) {x" X’: (x’, y- x)- e f(y)- f(x) for M1 y X}. Clearly if 0, we recover

the convex subdifferential defined above. If f F0(X)= {proper, lower semicontinuous,
convex functions} d x dom f {z X: f(z) < }, then Of(x) # for > 0. DuMly we

can define O,f(x) by saying that x* O,f(x)if and only if f(x)+ f*(x’)-(x’,x) e. AgMn
O,c(x Nb(x) {x* X*’(x*,y- z) e for all y C}, the set of e-normals to C at x. Note
that Nb(x), e > 0 is no longer a cone.

Let f:XR be a locMly Lipschitz function. Following Clke [2], we define

ff(x;h)=liml(u+x)-l(u) the generalized directional derivative of f(.) at z in the
M0

direction h. It is easy to check that f(x;- is finite, positively homogeneous, subadditive and
satisfies f(z;h) k h II- So we c define the set

O,f(x) (x" X’:(x’,h) f(x;h) for all h }.
We cM10f(x) the Clarke (or generalized) subdifferential of f(. at x X. If f(. )is

also convex, then the Clarke and convex subdifferentials coincide; i.e. Of(x) Of(x).

Let f’(x;h)=li1{+xh)-y()x If f’(x; h) exists for all hX and f’(x;h)=f(x;h),
h X, then f(-) is said to be regul at x. This is a fairly large cls of functions that includes

the convex continuous functions and the functions that are strictly differentiable at x.

3. CONVEX INTEGRAND.

Let Z be a bounded domain in " with smooth boundary OZ F. We will be studying
the following optimization problem, with W’(Z), < p <

inf{fL(z,x(Z),z x(z))dz:x+W’(Z)}" (*)

In this section we consider the ce where the integrand L(., .,. is convex in the lt
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two variables. We will need the following hypothesis:

H(L): L: Z x R x R"R is an integrand s.t.

(1) z--,L(z,x,y) is measurable,

(2) (z,y)--,L(z,z,y) is continuous, convex,

(3) IL(z,,y) < a(z) / b(l / Y ) a.. with a(-) E L+.
We have the following necessary and sufficient condition for optimality in problem (,).

THEOREM 3.1. If hypothesis H(L) holds, the__anx E V + Wo’(Z) solves (,) if and

only if there exists v* e Lq.(Z)= Lq(Z,[") with divv" q Lq(Z) s.t. divv’(z)z(z) +
(v*(z), XTx(z))=L(z,x(z), X7z(z))+L’(z, div v’(z),v’(z)) a.e. where (.,-) denote the inner

product in

PROOF. Let A: Wx’v(Z)--,Lv(Z) x L.(Z) be defined by Ax (x, X7 x). Clearly A(. is

linear, continuous. Furthermore we know (see for example Ekeland-Temam [31), that

A*:Lq(Z)xLq.(Z)--,[W"r(Z)]’(1/p+I/q=I) is defined by A’(z,y)=z-divy. Let JL:
L(Z)xL(Z)R be the integral functional defined by JL(Z,y)= f L(z,x(z),y(z))dz. Then

problem (,) takes the following equivalent form:
z

inf{(JLoAXx):x e + W’(Z) V} (,)’

Since the cost functional is convex (hypothesis H(L)(2)), from the convex analysis (see
section 2), we know that x(. ) Y solves problem (,)’ (and so the equivalent problem (,))if
and only if 0 i)(gLOAXx)+ gv(x). But Y is an affine space parallel to W’(Z). So

Nv(x)= W’(Z) +/- {0}. Hence 0 O(JLoAXx). Because of hypothesis H(L), JL(’, ")is
continuous on L(Z) L(Z). Therefore theorem 2, p. 201 of Ioffe-Tichomirov [5], tells us that

O(JLoAXx) A’OJL(Ax). From aockafellar [7], we know that OJL(AX)= SqOL(.,,(.),
{x*(. E Lq(Z) x Lq,(Z):x*(z) OL(z,x(z), X7 x(z))a.e.} (here OL(z,x,y) is the convex

subdifferential of L(z,.,-)). So we have that O A*OJL(ZX) if and only if there exist

(w*,v*) Lq(Z)x Lq,(Z) s.t. (w*,v*) OJL(AX) and A*(w*,v*)= O. From this last equation we

get that w*-divv*=O=w*=divv*. Then since (div v*,v*)OJL(AX)=SqOL(.,(.),7z(.)),
(div v*(z),v*(z)) OL(z,x(z), 7 x(z)) a.e. Invoking the Young-Fenchel equality, we get that

divv’(z).x(z) + (v*(z), V x(z))) L(z,x(z), V x(z)) + L’(z, div v.’(z), v’(z)) a.e.

Q.E.D.

Using partial conjugates of L(z, .,. with respect to x and y respectively, we can have

the following necessary condition for optimality concerning (,). By L"1 (resp. L") we will

denote the conjugate of L(z,. ,y) (resp. of L(z,x,. )).

COROLLARY I. If hypothesis H(L) holds and x E V + W’(Z) solves (,), then

there exists v*(.)E L,(Z) s.t. div v*(. Lq(Z) and L(z,z(z), V x(z)) + L*l(z, div
v*(z), V x(z)) =div v’(z).x(z) a.e., L(z,x(z), V x(z)) + L*(z,x(z), v’(z)) (v*(z), V x(z)> a.e.

PROOF. As in the proof of theorem 3.1, we get v*(-)e L,(Z) s.t. div v*(. )e Lq(Z) and

(d v’(z), ’(z)) e OL(z,(z), V (z)) ..
Applying proposition 2.3.15, p. 48 of Clarke [2] to OL and using the Young-Fenchel

equality, we get the corollary.
Q.E.D.
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4. NONCONVEX INTEGRAND.

In this section we drop the convexity hypothesis on L(z, .,. and instead we assume

that L(z, .,. is Lipschitz. Using Clarke’s subdifferential, we derive a necessary condition for

optimality in this nonconvex problem.

So our hypothesis about L(-,., -) is now the following:

H(L)’: L:Z IR R"R is an integrand s.t.

(1) zL(z,x,y) is measurable,

(2) for all (x,y),(x’,y’)ER", we have IL(z,x,y)-L(z,x’,y’)l <_k(z)
z z’ + y y’ a.e. with k( e L+ (Z)

THEOREM 4.1. If hypothesis g(n)’ holds and x Y + W’(Z) solves (.), then
there exists v’(. e L(Z) s.t. day v’(. e Lq(Z) and (dAy v’(. ), v’(. )) e OcL(z,x(z), 7 x(z)) a.e.

PROOF. Using the corollary on page 52 of Clarke [2], we know that since x E V solves

(.), then 0 e o=(gt.oA)(x)+ gv(x) Oc(JLoA)(x) (since Yv(x) W’’(Z) +/- {0}). From
proposition 2, p. 216 of Aubin [1], we know that Oc(JLoA)(x)C_ A’OJL(Ax), while from

theorem 2.7.5 of Clarke [2], we have i)=JL(Ax)CSo L( ,x(.}, V x(.}}"
So we can find

(w*,v*) e Lq(Z) xLq(Z) s.t. w* dAy v* and (dAy v*(z),v*(z) ’OL(z,x(z), V x(z)) a.e.

Q.E.D.

REMARKS. (1) If i(z, .,. is regular at (x(z), X7 x(z)) for almost all z ( Z, then using

proposition 2.3.15, p. 48 of Clarke [2], we can also say that div v*(z) OL(z,x(z), 7 x(z)) a.e.

and v*(z) Ot(z,x(z), X7 x(z)) a.e., where Ot denotes the Clarke subdifferential of L(z, .,y)
and OL(z, x,. the Clarke subdifferential of L(z, x,- ).

(2) If i(z, .,. is a CLfunction at (x(z), x(z)) for almost all z C Z, then theorem 4.1

combined with remark (1) above tells us that there exists v*(. ) iq,(Z) s.t. day v*(. ) Lq(z),
div v’(z)= i’(z,x(z), V x(z)) a.e. and v’(z)= L’(z,x(z), V x(z)) a.e.

5. INFINITE DIMENSIONAL EVOLUTIONS.

In this section n 1 (time variable) and the state space is infinite dimensional. So let

T =[0,b] and X be a separable, reflexive Banach space. We consider the following
optimization problem:

m in] L(,e())d: x(O)= ,()= k’,x(. )_ WI’(T,X) (**)
0

Here W’(T,X) is the space of all X-valued distributions x(.) s.t. 5c L(X) the

derivative taken in the sense of distributions. Recall that WI’(T,X) is a Banach space with

the norm w, -[11 x) / Ex)]’/- AXso it is well known that each function in

WI’(T,X) is almost everywhere equal to an absolutely continuous function and so the

boundary conditions in (**) make sense.

Let r/: WI’(T,X)-LP(T,X) be defined by r/(z)= and consider VI {z W"(T,X):

z(O) Zo, z(b k’}, and V2 {v E LP(X): f v(s)ds k’- x0 k}. Then r/Iv, a bijection from
0

Va to V and so we deduce that (**) is equivalent to the following optimization problem:

inf L(t,y(t))dt:y L’(X), y(s)ds k’- zo k

0 0
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Note that (**)’ is equal to (L,)(k), where (3fL,)(.) is the continuous infimal
o o

convolution introduced by Ioffe-Tichomirov [5] (section 8.3.2).

We have the following necessary and sufficient condition for (approximate) optimality
in (**)’ and hence in the equivalent problem (**).

THEOREM 5.1. If L:TXR is a measurable integrand, convex in x and assume

that O(IL,)(k)# , the__..n x(. )6- WI’P(T,X)is e-optimal for (**) e > 0, if and only if there
0

exists x* 6- X* and e(. )6- L+ s.t. x* 6_ O,(t)L(t,i:(t)) a.e., f e(s)ds < and
o

$ (s)ds .
o

PROOF. Sufficiency

From the definition of the e-differential (see section 2), we know that for any

y(. 6_ LI(Z) we have:

(z’,y(t)- 5c(t))-e(t) < L(t,y(t))- L(t, bc(t)) a.e.

Let (k) be the subset of L(Z) defined by

b
(k) {y(. )6_ L’(X): / y(t)dt k}.

0

Taking the infimum over 1(k) of both sides of the last inequality, we get

But f e(t)dt < e. So we have that
o

b

f L(t, ic(t))dt < m + e.

0

Necessity:

Let x*6_ O[L,dt](k). Consider the function u(t,y)= L(t, bc(t))-L(t,y)+ (x*,y-x*(t))
0

and set e(t)=sup u(t,y). By taking y=2(t) for every t6_T, we can see

that e(t)>_ O. Also observe that given >_ 0, e(t)> if and only if there exists y 6_ X s.t.

u(t,y) > . Hence {t 6_ T:e(t) > } projT{(t,y):u(t,y > }. Since u(.,. is measurable, the
von Neumann projection theorem (see Saint-Beuve [8]) tells us that projT{(t,y):u(t,y > A} is a

Lebesgue measurable subset of T. Hence e(. is Lebesgue measurable.

For all (t,y)6_ T x X, we have that

L(t, ic(t))- L(t,y) + (x’,y- 2(t)) < e(t)

x* 6_ i),(t)L(t,c(t)) for all 6_ T.
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We claim that f e(t)dt <_ e. To this end, observe that since x’e O[L,dt](k), for all
o o

y X, we have
b b
L,dt)(y) J Ltdt)(k >_ (x*,y

0 0

So for all y(. L’(X), we have:

b b b

0 0 0
b

/ (L(t,(t))- L(t,y(t)) + (x’,y(t)- #c(t))dt <_
0

b
=>e >_ sup[/ (L(t,#c(t))- L(t,y(t)) + (x’,y(t)))dt:y( LI(X)]

0
b

/ sup[L(t,c(t))- L(t,y)+ (x’,y (t)):y X]dt
0

(see theorem 2.2 of Hiai-Umegaki [4]),

f e(t)dt.

EXAMPLES.
Q.E.D.

(/) Consider the following minimization problem:

in/{J(x)- / t#c(t)2dt:x( WI’2(T),x(O) 1,x(1) 0} m

0

Let x(t) for 0 < < k -1 and x(t) Int/Ink for k-’ < < 1. We have

J(xk) (lnk)-l-+o as k---,cx:. So m 0. But this value of (***)a is not realized by any

x(. WI’2(T), because then tc(t) 0 a.e. =c(t) 0 a.e. =x(. is ’a constant, a violation of

the boundary conditions. Another minimizing sequence for (***)1 is z,(t)= tnt [0,1].

So we can only find e-optimal solutions for (***)1. According to theorem 5.1,

x(.) WI’(T) is an ,-optimal solution of (***)1 if and only if there exists z* R and

,(. c z’(,) .t. (),() < ,, (#)- c o,(,)(()) [2(()- / c ()), 2(() + V/ c ())l
o

a.e. and (7) f c(s)ds 1.
o

So let ,(t)= e. From (c), () and (7) above, we deduce that x’= 0 satisfies (7)if and

only if v < v/5:(t) < v/, [0,1]. Thus we have that ,,(t)= n- 1In [0,1], n > is the
1Inderivative of an e-optimal solution if n _> .. Therefore x,(t) is an e-optimal solution if

n >_ . So we have produced the second of the minimizing sequences mentioned above.

(/_/) Let Z be a bounded domain in R" with smooth boundary. We consider

"Plateau’s problems""

inf{J(x) /(1 + V (z)II =)’/=dz:, + W’=(Z) V}
Z
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where E WI’(Z).

Invoking theorem 3.1 of this paper (special case where the integrand is independent of

(z,x)), we have that x(. E V is a solution of (***) if and only if there exists v*(. ) L(Z) s.t.

aloe," 0 a (i) ’(,)II _< a.e. (ii) (1 + v,(z)I1’)’/’- ( ’()II =)’/
<v (z), ’(z)> ...

If we express those optimality conditions in terms of the subdifferential of the cost

inegr=d (1 + )/=, we hve

v’( OJ(x) V J(x)
(1 + v

and so clearly divv" 0. These are the optimality conditions obtained by Ekeland-Temam [3],
chapter V, section 1.1 and chapter X, section 4.2.
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