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ABSTRACT. In this paper we examine optimization problems involving multidimensional
nonsmooth integral functionals defined on Sobolev spaces. We obtain necessary and sufficient
conditions for optimality in convex, finite dimensional problems using techniques from convex
analysis and in nonconvex, finite dimensional problems, using the subdifferential of Clarke.
We also consider problems with infinite dimensional state space and we finally present two

examples.
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1. INTRODUCTION.

The importance of the problem of minimization of a multidimensional integral
functional defined on a Sobolev space, is well documented in the books of Ekeland-Temam (3]
and Ladyzhenskaya-Uraltseva [6]. Various problems in calculus of variations, optimal control

of distributed parameter systems and mechanics involve such a minimization.

In this note we obtain some necessary and sufficient conditions for the existence of a
minimum or e-minimum of an integral functional defined on a Sobolev space. However
contrary to most of the works in the literature, we consider nonsmooth integrands. Using
concepts and techniques form nonsmooth analysis, we are able to obtain necessary and
sufficient conditions for optimality in finite dimensional, convex problems (see theorem 3.1 and
corollary I), in finite dimensional nonconvex problems (see theorem 4.1) and in infinite
dimensional problems (see theorem 5.1). Finally we present two examples illustrating the
applicability of our results.

2. PRELIMINARIES.

In this section we briefly recall some of the basic notions and facts from nonsmooth

analysis that we will need in the sequel. For more details we refer to the works of Clarke [2],
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Ekeland-Temam [3] and Rockafellar [7].

Let X be a real normed space and X" its dual. consider any function
f:X—>R =RU{+o00}. The conjugate of f(-) is the function f*X*—R defined by
f*(z*) = sup{(z”,z) — f(z):z € X}. Here (-,-) denotes the duality brackets for the pair
(X,X*). It is clear from this definition that for all z* € X*, we have (z*,z) < f*(z*) + f(z).
This inequality is known as the “Young-Fenchel inequality”. Given a proper convex function
f: X—R (proper meaning that f(-) is not identically + o0), the convex subdifferential of 1),
is the generally multivalued mapping df: X—X* defined by df(z) = {z*€ X*: (z*,y—1z) <
f(y)— f(z) for all y € X}. The elements of df(z) are called subgradients of f(-) at z. It is
clear that df(z) is always a closed, convex, maybe empty subset of X*. Let C be a closed
convex subset of X and let é¢(-) be its indicator function; i.e. éo(z)=0 if r€C, +oo
otherwise. Then 0éc(x) # @ if and only if z € C and 864(z) = Ng(z) = {z* € X*:(z*,y—z) <0
for all y € C}, the normal cone to C at z. If C is an affine space parallel to a subspace V, then
Ng(z)=V 1. If f(-) is Gateaux differentiable at z, then df(z) = {V f(z)}. Also using the
subdifferential, we can have the following generalization of a well known optimality condition
concerning the minimum of f(-). So for a proper, convex function f(-), the minimum (global)
of f(-) over X is attained at z € X if and only if 0 € df(z). Also it is easy to check that
z* € 0f(z) if and only if f(z)+ f*(z*) = (¢",z) (“Young-Fenchel equality”). More generally,
given any € > 0 and a proper convex function f(-), the e-subdifferential of f(-) at z is defined
by 3. f(z) ={z* € X*:(z*,y—z) — e < f(y) — f(z) for all y€ X}. Clearly if ¢ =0, we recover
the convex subdifferential defined above. If f € I'y(X)= {proper, lower semicontinuous,
convex functions} and z € dom f = {2 € X: f(z) < oo}, then 8,f(z) #0 for € >0. Dually we
can define d f(z) by saying that z* € 9.f(z) if and only if f(z)+ f*(z*)—(z*,z) <e. Again
0bc(x) = Ng(z) = {2* € X*:(z*,y—z) < ¢ for all y € C}, the set of e-normals to C at z. Note

that N&(z), € > 0 is no longer a cone.

Let f:X—>R be a locally Lipschitz function. Following Clarke [2], we define

f°(z;h)=§_rg_gw, the generalized directional derivative of f(-) at z in the
Alo

direction h. It is easy to check that f%(z; -) is finite, positively homogeneous, subadditive and
satisfies | fO(z;h)| < k| h]||. So we can define the set

3.f(z) = (z* € X*:(2",h) < f%z;h) for all h € X}
We call 9_f(z) the Clarke (or generalized) subdifferential of f(-) at z€ X. If f(-)is
also convex, then the Clarke and convex subdifferentials coincide; i.e. df(z) = 8 f(z).

Let f(z;h) = Iim]w. If f(z;h) exists for all h€ X and f(z;h) = fx;h),
h € X, then f(-)is said to be regular at . This is a fairly large class of functions that includes
the convex continuous functions and the functions that are strictly differentiable at z.

3. CONVEX INTEGRAND.

Let Z be a bounded domain in R® with smooth boundary dZ =T. We will be studying
the following optimization problem, with ¢ € W'P(Z), 1 < p < 0o

inf / L(z,2(2), V 2(2))dz:z € 6 + WEP(2)\. (*)
Z

In this section we consider the case where the integrand L(-, -, -) is convex in the last
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two variables. We will need the following hypothesis:
H(L): L:Z xR xR"-R is an integrand s.t.
(1) z—L(z,z,y) is measurable,
(2) (z,y)—L(2,z,y) is continuous, convex,
®) 1 Lzny)| <a@)+b(]2]7+ |y)l?) ae. with af-) € L},

We have the following necessary and sufficient condition for optimality in problem (*).

THEOREM 3.1. If hypothesis H(L) holds, thenz € V = ¢+ W} P(Z) solves () if and
only if there exists v*€L3(Z)=LYZ,R") with divv*€LY(Z) st divv*(2)z(2)+
(v*(2), V 2(2)) = L(2,2(2), V 2(z)) + L*(z,div v*(z),v*(z)) a.e. where (-,-) denote the inner
product in R™

PROOF. Let A:W'P(Z}—LP(Z)x L¥(Z) be defined by Az = (z, Vz). Clearly A(-) is
linear, continuous. Furthermore we know (see for example Ekeland-Temam (3]), that
A% LY(Z)x LY 2)-[WVP(Z2)]"(1/p+1/g=1) is defined by A*(z,y)=z—divy. Let Jy
LP(Z)x L% Z)—R be the integral functional defined by Ji(z,y) = [ L(z,2(z),y(z))dz. Then
problem (*) takes the following equivalent form: Z

inf{(J oA z)z € 6+ WEP(2) =V} (x)

Since the cost functional is convex (hypothesis H(L)(2)), from the convex analysis (see
section 2), we know that z(-) € V solves problem ()’ (and so the equivalent problem (*)) if
and only if 0€ &J04Xz)+ Ny(z). But V is an affine space parallel to W} P(Z). So
Ny(z) =WyP(Z)* = {0}. Hence 0€ &J,0A)z). Because of hypothesis H(L), Jy(-,") is
continuous on LP(Z)x L?(Z). Therefore theorem 2, p. 201 of Ioffe-Tichomirov [5], tells us that
&HJoA)z) = A*dJ (Az). From Rockafellar [7], we know that dJ(Az) = S;L( 2, V =)
={z*(-) € LYZ) x LY(Z):2*(z) € OL(z,2(z), V z(z))a.e.} (here OL(z,z,y) is the convex
subdifferential of L(z,-,-)). So we have that 0€ A*8J;(Zz) if and only if there exist
(w*,v*) € LY(Z)x LY Z) s.t. (w*,v*) € 3J(Az) and A*(w*,v*) =0. From this last equation we
get that w*—divv* = 0=>w* = divv*. Then since (div v*,v*) € 3J (Az) = S;L( 2 V()
(div v*(2),v*(2)) € L(2,2(z), V z(z)) a.e. Invoking the Young-Fenchel equality, we get that

divv*(2).2(2) + (v*(2), V 2(2))) = L(z,2(2), V 2(2)) + L*(z,div v*(2),v"(2)) a.e.
E.D.

O

Using partial conjugates of L(z, -, - ) with respect to z and y respectively, we can have
the following necessary condition for optimality concerning (*). By L™ (resp. L*2) we will
denote the conjugate of L(z, -,y) (resp. of L(z,z, -)).

COROLLARY 1. If hypothesis H(L) holds and z € V = ¢ + W} P(Z) solves (x), then
there exists v*(:)€L%Y(Z) st. div v*(-)€LYZ) and L(z,2(z), V a(2)) + L™(z,diwv
v*(2), V 2(2)) = div v*(2).2(2) a.e., L(z,2(2), V z(2)) + L (2, 2(2),v*(2)) = (v*(2), V z(2)) a.e.

PROOF. As in the proof of theorem 3.1, we get v*(-) € LY(Z) s.t. div v*(-) € LI(Z) and
(div v*(2),v*(2)) € OL(2,2(z), V z(z)) a.e.

Applying proposition 2.3.15, p. 48 of Clarke (2] to 0L and using the Young-Fenchel
equality, we get the corollary.
.E.D.

La)

|
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4. NONCONVEX INTEGRAND.

In this section we drop the convexity hypothesis on L(z, -, -) and instead we assume
that L(z, -, -) is Lipschitz. Using Clarke’s subdifferential, we derive a necessary condition for

optimality in this nonconvex problem.

So our hypothesis about (-, -, - ) is now the following:
H(LY: L:ZxRxR">Ris an integrand s.t.
(1) 2—IL(z,z,y) is measurable,
(2) for all (z,y9),(z,y) ERXR", we have |L(zz,y)—L(z,2,y)| <k(z)
(lz='| + ly=y'|l) ae. with k(-) € L% (2)

THEOREM 4.1. If hypothesis H(L) holds and z € V = ¢ + W} P(Z) solves (x), then
there exists v*(-) € LI(Z) s.t. div v*(-) € LYZ) and (div v*(-),v"()) € 8.L(z,z(z), V z(z)) a.e.

PROOF. Using the corollary on page 52 of Clarke (2], we know that since z € V solves
(%), then 0€ 8 (JpoA)(x)+ Ny(z) = 8,(J0A)(z) (since Ny(z)=WLP(Z)t = {0}). From
proposition 2, p. 216 of Aubin [1], we know that 3. (J 0A4)(z) C A*9.J(Az), while from
theorem 2.7.5 of Clarke [2], we have 8.Jp(Az)C S} L2y, V(o))
(w*,v*) € LY(Z) x LY(Z) s.t. w* = div v* and (div v‘(z),v'(z)j € 0.L(2,2(z), Vz(z)) ae.

So we can find

.E.D.

REMARKS. (1) If L(z, -, - ) is regular at (z(z), V z(z)) for almost all z € Z, then using
proposition 2.3.15, p. 48 of Clarke [2], we can also say that div v*(z) € 3,,L(z,z(z), V z(2)) a.e.
and v*(z) € 0,,L(2,2(2), V z(z)) a.e., where 8., denotes the Clarke subdifferential of L(z, -,y)
and 0,L(z,z, -) the Clarke subdifferential of L(z,z, -).

(2) If L(z, -, -) is a C*-function at (z(z), V z(z)) for almost all z € Z, then theorem 4.1
combined with remark (1) above tells us that there exists v*(-) € L3(Z) s.t. div v*(-) € LY(Z),
div v*(2) = Li(z,2(2), V z(2)) a.e. and v*(z) = Li(z,2(2), V 2(2)) a.e.

5. INFINITE DIMENSIONAL EVOLUTIONS.

O

In this section n =1 (time variable) and the state space is infinite dimensional. So let
T =[0,b] and X be a separable, reflexive Banach space. @ We consider the following

optimization problem:

b .

m = inf { [ Ut x(0)dt2(0) = 20 20) = Kyl ) € W"P(T,)d} (+4)
0

Here WV P(T,X) is the space of all X-valued distributions z(-) s.t. & € LP(X) the

derivative taken in the sense of distributions. Recall that W' P(T, X) is a Banach space with

the norm [z || L1, p=[l2 | px)+ 121l Ep(x)]ll". Also it is well known that each function in

W' P(T,X) is almost everywhere equal to an absolutely continuous function and so the

boundary conditions in (**) make sense.
Let n:WP(T, X)—LP(T, X) be defined by n(z) = ¢ and consider V, = {x € W"%(T, X):
b
z(0) = zo,2(b) = k'}, and V, = {v € LP(X): fv(s)ds = k' — gy =k}. Then 7| v, 2 bijection from
)

V, to V, and so we deduce that (x*) is equivalent to the following optimization problem:

b b
inf { / L(t,y(t))dt:y € LP(X), / y(s)ds=k —zy = k} (xx)
0 0
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Note that (++) is equal to (§L,)(k), where (§L,)(-) is the continuous infimal
0 1]
convolution introduced by Ioffe-Tichomirov [5] (section 8.3.2).

We have the following necessary and sufficient condition for (approximate) optimality

in (*+)' and hence in the equivalent problem (*x).

THEOREM 5.1. If L:Tx X—R is a measurable integrand, convex in z and assume
that 6(§'L,)(k) # ¢, then z(-)€ WhP(T,X) is e-optimal for (++) € >0, if and only if there
ixists €X* and e(-)eLy st z°€dL(ti(t) ae, Ze(s)ds <e and
{ i(s)ds=k.

PROOF. Sufficiency

From the definition of the e-differential (see section 2), we know that for any
y(-) € LY(Z) we have:

(2", y(t) — 2(t)) — e(t) < L(t,y(t)) — L(t, 2(t)) a.e.

b b b b
=>/ L(t,:'c(t))dt+(z",/ (y(t)—i(t))dt)—/ e(t)dt < / L(t,y(t))dt.
0 0 0 0
Let £1(k) be the subset of L!(Z) defined by
b
(k)= {u(-) € L'(X): [ y(t)dt = k).
0

Taking the infimum over 2£(k) of both sides of the last inequality, we get
b b b
/ L(t, #(t))dt — / e(t)dt <[ f Lodt)(k) = m.
0 0 0

b
But fe(t)dt <e. So we have that
0

b
/ L(t, &(t))dt < m +e.
0

Necessity:

b
Let z* € [ § L dt](k). Consider the function u(t,y) = L(t,#(t)) — L(t,y) + (z*,y — z*(¢))

0

and set e(t) =sup u(t,y). By taking y=i(t) for every t€T, we can see
yeX

that €(t) > 0. Also observe that given A >0, €(t)> ) if and only if there exists y € X s.t.

u(t,y) > A. Hence {t € T:¢(t) > A} = projr{(t,y):u(t,y) > A}. Since u(-, -) is measurable, the

von Neumann projection theorem (see Saint-Beuve [8]) tells us that projr{(¢,y):u(t,y) > A} is a

Lebesgue measurable subset of T. Hence ¢( - ) is Lebesgue measurable.

For all (¢,y) € T x X, we have that

L(t,2()) - Lt,y) + (=7 y — (2)) < €(t)
=a" € 0,,)L(t,2(t)) for all t € T.
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We claim that }e(t)dt <e. To this end, observe that since z* € 6[;'L,dt](k), for all
0 0
y € X, we have

b b
(f Lat\w) - (§ Ldt)k) 2 "y~ k).
0 0

So for all y(-) € L'(X), we have:
b b b
@, [ GO-2wa < [ Lty - [ Ltaw)dt+e
0 1] 0
b
> [ (L(t,3(6) - L(t,y(®) + (=", y(t) - (t))dt < e
0

b
=e2 S“P[/ (L(t, 2(t)) — L(t,y(t)) + (=", y(1)))dt:y( - ) € L}(X)]
0

b
= [ suplL(t, () - Litw) + @y - &)y € Xldt
0

(see theorem 2.2 of Hiai-Umegaki [4]),

b
= / e(t)dt.
0 Q.E.D
6. EXAMPLES.
(z) Consider the following minimization problem:
1
inf{J(z) - / ta(8)dt:2( - ) € WV¥(T), 2(0) = 1,2(1) = 0} = m,. (+4%),

0

Let z,(t)=1 for 0<t<k~! and =z,(t)=Int/lnk for k~'<t<1. We have
J(z) = (Ink)~1=0 as k—oo. So m, =0. But this value of (*+*); is not realized by any
z(-) € WV(T), because then ti(t)? =0 a.e. =(t) =0 a.e. =z(-) is a constant, a violation of
the boundary conditions. Another minimizing sequence for (**x), is z,(t) = t"t € [0,1].

So we can only find e-optimal solutions for (%**),. According to theorem 5.1,

z(-)e Wh¥T) is an e-optimal solution of (*x*); if and only if there exists z*€R and
1
. 1 < * 3 2 — I3 _ N
(1) € Li(e) st (a)[els) ds <, (B)a™ € Dyyy)(s(s)') = [2Asi(s) = /s € (3)), 2Asi(s) + /5 € (s))]
a.e. and (y) f&(s)ds= —1.
o
So let €(t) = €. From (), (8) and () above, we deduce that z* = 0 satisfies (v) if and
1

only if — /e < Vti(t) < /e, t €[0,1]. Thus we have that &,(t)=t"""/n t €(0,1], n > 1 is the
derivative of an e-optimal solution if n > -’—z Therefore z,,(t) = t'/" is an e-optimal solution if

n> ? So we have produced the second of the minimizing sequences mentioned above.
(22) Let Z be a bounded domain in R™ with smooth boundary. We consider

“Plateau’s problems”:

inf{J(e) = [(L+ ]| Va(a) || dzz € ¢+ WH2Z) = V) (ees)s
Z
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where ¢ € W'%(2Z).

Invoking theorem 3.1 of this paper (special case where the integrand is independent of
(2,z)), we have that z(-) € V is a solution of (++*), if and only if there exists v*(-) € L*2) s.t.
divr =0 and () [0 <1 ae @) 0+ V@D (1- o) 2=
(V z(2),z*(2)) ace.

If we express those optimality conditions in terms of the subdifferential of the cost
integrand (1 + ||y || %)"/?, we have

()=0J(@) = VI(z)= | — LI __
() =000 = V) =L T ]
and so clearly divv* = 0. These are the optimality conditions obtained by Ekeland-Temam [3],
chapter V, section 1.1 and chapter X, section 4.2.
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