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1. INTRODUCTION.

Horn's fixed point theorem [ 3 ] has numerous interesting applications, espe -
cially to obtain periodic solutions of differential and retarded functional differen
tial equations. In this subject we refer to the paper of Burton and Dwiggins [ 1]
as well as those referencesmentioned in it. In these applications, the problem of
existence of periodic solutions is reduced to the existence of a fixed point in the
phase space associated with the equation. Consequently, in order to apply Horn's
theorem it is necessary that the phase space be a Banach space. Nevertheless, this
condition is not appropriated for retarded functional differential equations with
infinite delay and, in general, for abstract differential equations. For these
reasons Burton and Dwiggins established an extension of Horn's theorem to the
Fréchet space C((- >, 0] IRn) endowed with the compact -open topology. This
extension permits consideration of equations whose initial conditions are continuous
functions. However, in many initial values problems the space of continuous func-
tions is not the most appropriate, being necessary to consider integrable functions.

This occurs, for example, in some models used in control theory ([21]).

We now state Horn's theorem [ 3 ].

THEOREM 1. Let X be a Banach space, So c S1 c 82 convex subsets of X with So

and S, compact and S, open in S Let P:S, “—> X be a continuous map. Suppose that

2 1 2° 2
for some integer m > 0 the following conditions hold :

a) Pl(s) Cs,, for 1<j<m-l, and
b) PI(s) €5, form< < 2m-l

Then P has a fixed point in So.

In this note we use the line of reasoning of Burton and Dwiggins[ 1] to
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extend the Horn's theorem to a Fréchet space of locally integrable functioms.

In the sequel we will denote by X a Banach space with norm |l |l. We will
designate by B the Fréchet space consisting of the equivalence classes of func-
tions y:(- ®, 0 ] —> X which are locally integrable in the Bochner sense, endo

wed with the topology T induced by the family of seminorms

o
p (9) = le(@ I+ [le(e)lido , n€N. (1.1)

-n
We will represent by G the set formed by all continuous and increasing func
tions g:(-~, 0] —> [ 0,1 ] such that g(0) = 1 and g(@) —> 0, as @ —> -,
For each g € G we will write Bg to denote the space of the equivalence classes of

locally integrable functions ¢: (-» , 0 ] —> X such that
o
el = e (Ol + [ g(@le(@) ldo <« . (1.2)

It is easy to see that (Bg, [ | g) is a Banach space.

The aim of this-paper is to prove that theorem 1 holds if we susbtitute the

arbitrary Banach space X by the Fréchet space (B, 7).

2. RESULTS.

In this section we will prove that Horn's theorem is also true in the space
(B, 1).

The proof is a consequence of the following four lemmas, that relate the

Banach spaces Bg, for g € G, with the space (B , 1).

LEMMA 1. Let g € G. The following conditions held :
i) The inclusion mapping i: Bg —> B is continuous.
ii) 1If S is a bounded subset of B then the inclusion map i:(S,r ) —> Bg-h

is continuous for every h € G.

Proof. Since B is a Fréchet space whose topology is generated by the semi-

norms p_, n € IN, to prove assertion i) it is sufficient to observe that

o
g(-n)p (¢) = g(-n) ¥ (0) II + g(-n) [ el de
-n

(o]
< llp(0) I + [ g(o) Nlw(o) Il do
-n

<lhol
(4 g

which yields that pn(w) <y llg / g(-n), for every v € B .

Next we will prove ii). If S is a bounded subset of Bg then S C th, for
each h € G. Let M > 0 be a constant such that Il ¢ "g <M for all ¢y €S. For
each € > 0 there exists a positive integer n such that || h(0) II < _Zi . for

every O < -n .
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Let v , ¥ € S be such that pn(w , V) < -£ . From the definition of Il+|l

2 gh
we obtain the following estimate
o
e = vy = 1e(0) - v(O) Il + /| 8(®h(©) I ¢(©) - ¥(o) Il do
o
<l (0) - p(OI + [ g(a)h(®) Il ¢v(8) ~ ¥(©) Ildo
-n
-n
+h(-n) [ g@ (I (@ I+ y() 1) do
o
<le(0) - w0 I+ [ U ¢(0) - ¥() Ide + 2M h(-n)
-n
= p (¢ - ¥) + 2M h(-n)
<e,
which shows that the inclusion § —> th is continuous for the relative topo-

logy in S.

Concerning this result, it is worth mentioning that, in general, the inclu-
sion i: (S, 1) —> Bg is not continuous. In fact, let us consider the space X=C
and let g be the function defined by g(0) = |O|_2 for - »< 0 < -1 and g(0) = 1
for -1 < 0 < 0. From this definition it follows that g € G. Let us define, for
each natural n, the function Y € B, which equals g in (-~, -2n ] Y[-n,0 ] and
¢n(0) = g(@) + |0, for @ € (-2n, -n). It is easy to see that these functions
belong to B and that ¢, —>8 asn—>=, in the topology of B. We can also

see that the subset S = {g } U {wn: n € IN } is bounded in Bg . However,

n
-1
le -gll_= ¢] do = 1In 2
n # g {2n I I ’
which shows that the sequence (‘pﬂ)n does not converge to g in BB. Hence the

inclusion § —> Bg is not continuous.

LEMMA 2. Let S be a compact subset of (B,t). Then for every pair of
constants a,b > 0 and every positive integer k there exists an increasing and

continuous function q: [-k, -k+1 ] —> [0, «) such that q(-k+l) = a and

L+
[ q(®) Il v(0) ldo < b,
Kk

for every ¢ € S.

Proof. For each v € B we will denote by R(y¢) the restriction of ¢ to the
interval [-k , -k+1 ] . It is clear that the mapping R: B—> Ll( [-k, =k+1 ]; X)
is continuous, which implies that the set R(S) is compact in the space
Ll( [ -k, -k+1] ; X). Consequently, there exist functions W1 Pos crees n €S
such that for each vy € S we can find an index i = 1,2,..., n for which

~k+1
b

J W@ -v;(@)1de <= . (2.1)
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On the other hand, since the space of continuous functions C( [ -k, -k+1] ; X ) is
dense in the space of Bochner - integrable functions ([ 4]) we may choose conti-

nuous functions wl,..., wn such that

-k+1 b
/ he,(@ =y (@) Ndo<—=- , i=1,2,...,0. (2.2)
-k
We now define the function q(0) = ae-a(_k+1—0) for c €[ -k, -k+1 ] , where a is
a positive constant such that
-k+1 b
[ a(0) Iy, (0) Il do <—- (2.3)

for all i = 1,2,...., n. Therefore, if follows form (2.1), (2.2) and (2.3) that

for each ¢y € S we can choose a function Y5 for which the following estimate hold

—k+1 —k+1
[ a1 e@lido < [ q(o) Il ¢(6) - v.(6) Il do
-k “k i
—k+1
+ [ q@® Ile.(0) - v (0) Il do
-k 1 i
—k+1
+ [ q(@ Il y.(0) lido
-k 1
<b

which completes the proof.

LEMMA 3. If S is a compact subset of B then there exists a function g € G
such that S C Bg and S is also compact for the topology of Bg .

Proof. We can assume that S contains a function ¢, such that |l ¢°(G) =1,
for -~ < 0 < 0. By lemma 2 we may assert that there exists a sequence of conti
nuous, positive and increasing functions q ¢ [k, ~k+1 ] —> IR, k # 1, such
that ql(O) =1, qk(-k+l) = qk_l(-k+l), for k 2 2, and

-k+1 1

) q (®) I ¢(0) I d0<?‘——

for every ¢y € S and all k € IN .

We define the function h: (-«», 0] —> IR by h(0) = qk(e) for
-k <0< -k + 1, and k # 1. Then h is a continuous and increasing function such
that h(0) = 1 and

o
[ n@E I e@Ndo<1, (2.4)

-0

for every ¢y € S .  Substituting 9, in the inequality (2.4) we obtain

o
[ n@de<1,

-0
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which implies that h(0) —> 0, as 0 —> - = , It follows from this that h € G.

On the other hand, since S is bounded in B, there exists a positive constant
M such that
eIl <M , (2.5)
for every v € S .

In view of (2.4) and (2.5) we conclude that S is a set included and bounded
in B, . Finally, using lemma 1. ii) we obtain that S is compact in Bg’ where
2
g= h" .

Our last lemma is the following .

LEMMA 4. Let S be a compact subset of B and let P:S —> B be a continuous
map. Then there exists a function g € G such that S C Bg and P: § —> Bg is

continuous for the topology induced by Bg in S.

Proof. Proceeding now as in the proof of lemma 3 we obtain that there exist

g1 8 € G such that SCB , P(S) € B and the inclusions i:(S, 1) —> B

are continuous. Let us consider the function g = 818" It is clear that g € G

and that the inclusion mappings Bg e Bg are continuous. Therefore both S as
i

P(S) are subsets of Bg' Since the map P: S C Bg —_ Bg can be represented by
the composition § ———> (8,71) D RN (P(S), 1) =———> Bg we obtain

that P is continuous for the topology induced by the space Bg .
We shall now end this note with statement and demonstration of the following.
THEOREM 2. Horn's theorem holds in the space ( B, 1).

Proof. Having obtained the lemmas 1 - 4 we can repeat the proof carried out
in [1 ]in the context of continuous functions with values in R, In fact, the
proof only depends on the properties established in the lemmas 1 - 4. We include

it here for completeness.

By lemma 3 there exists -9} € G such that Soand S_arecompact subsets of the

2
space Bg . Furthermore, applying lemma 4 we may conclude that there exists
1
g, € G such that P: S, —> B is continuous for the B_ - topology. Let us
2 &2 )
define g = g,-8,. Then S  and S, are also compact in Bg and P:§, —> B8 is still

continuous. On the other hand, from lemma 1 we obtain that S, is open in 52, for

1

the Bg- topology in S Moreover, it is clear that conditions a) and b) of theorem 1

2
remain unchanged. Thus theorem 1 applied in the space Bg implies that P has a

fixed point in So .
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