

ON CERTAIN BAZILEVIĆ FUNCTIONS OF ORDER β

SHIGEYOSHI OWA

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577
JAPAN

(Received May 8, 1991)

ABSTRACT. A certain class $B(n, \alpha, \beta)$ of Bazilević functions of order β in the unit disk is introduced. The object of the present paper is to derive some properties of functions belonging to the class $B(n, \alpha, \beta)$. Our result for the class $B(n, \alpha, \beta)$ is the improvement of the theorem by N. E. Cho ([1]).

KEY WORDS AND PHRASES. Analytic function, class $B(n, \alpha, \beta)$, Bazilević function.

1991 AMS SUBJECT CLASSIFICATION CODE. Primary 30C45.

1. INTRODUCTION.

Let $A(n)$ denote the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n \in N = \{1, 2, 3, \dots\}) \quad (1.1)$$

which are analytic in the unit disk $U = \{z: |z| < 1\}$. A function $f(z) \in A(n)$ is said to be a member of the class $B(n, \alpha, \beta)$ if it satisfies

$$\operatorname{Re} \left\{ \frac{f'(z)f(z)^{\alpha-1}}{z^{\alpha-1}} \right\} > \beta \quad (1.2)$$

for some $\alpha (\alpha > 0)$, $\beta (0 \leq \beta < 1)$, and for all $z \in U$. We note that $B(n, \alpha, \beta)$ is the subclass of Bazilević functions in the unit disk U (cf. [1]). Also we say that $f(z)$ in the class $B(n, \alpha, \beta)$ is a Bazilević function of order β .

Recently, Cho [1] has studied the class $B(n, \alpha, 0)$ when $\beta = 0$, and has proved

THEOREM A. If $f(z) \in B(n, 2, 0)$ when $\alpha = 2$ and $\beta = 0$, then

$$\operatorname{Re} \left\{ \frac{f(z)}{z} \right\} > \frac{n}{n+2} \quad (z \in U). \quad (1.3)$$

In the present paper, we improve the above theorem by Cho [1].

2. PROPERTIES OF THE CLASS $B(n, \alpha, \beta)$.

In order to establish our main result, we have to recall here the following lemma due to Miller and Mocanu [2].

LEMMA. Let $\phi(u, v)$ be a complex valued function,

$$\phi: D \rightarrow C, D \subset C^2 \quad (C \text{ is the complex plane}),$$

and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u, v)$ satisfies

- (i) $\phi(u, v)$ is continuous in D ;
- (ii) $(1, 0) \in D$ and $\operatorname{Re}\{\phi(1, 0)\} > 0$;
- (iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -n(1 + u_2^2)/2$,

$$\operatorname{Re}\{\phi(iu_2, v_1)\} \leq 0.$$

Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \dots$ be regular in the unit disk U such that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$\operatorname{Re}\{\phi(p(z), zp'(z))\} > 0 \quad (z \in U),$$

then

$$\operatorname{Re}\{p(z)\} > 0 \quad (z \in U).$$

Using the above lemma, we prove

THEOREM 1. If $f(z) \in B(n, \alpha, \beta)$, then

$$\operatorname{Re}\left\{\frac{f(z)}{z}\right\}^\alpha > \frac{n+2\alpha\beta}{n+2\alpha} \quad (z \in U). \quad (2.1)$$

PROOF. We define the function $p(z)$ by

$$\left\{\frac{f(z)}{z}\right\}^\alpha = \gamma + (1-\gamma)p(z) \quad (2.2)$$

with

$$\gamma = \frac{n+2\alpha\beta}{n+2\alpha}. \quad (2.3)$$

Then, we see that $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \dots$ is regular in U .

It follows from (2.2) that

$$\frac{f'(z)f(z)^{\alpha-1}}{z^{\alpha-1}} = \gamma + (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{\alpha}, \quad (2.4)$$

or

$$\begin{aligned} & \operatorname{Re}\left\{\frac{f'(z)f(z)^{\alpha-1}}{z^{\alpha-1}} - \beta\right\} \\ &= \operatorname{Re}\left\{\gamma - \beta + (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{\alpha}\right\} \\ &> 0. \end{aligned} \quad (2.5)$$

Defining the function $\phi(u, v)$ by

$$\phi(u, v) = \gamma - \beta + (1-\gamma)u + \frac{(1-\gamma)v}{\alpha}, \quad (2.6)$$

(note that $u = p(z)$ and $v = zp'(z)$, we have that

- (i) $\phi(u, v)$ is continuous in $D = C^2$;
- (ii) $(1, 0) \in D$ and $\operatorname{Re}\{\phi(1, 0)\} = 1 - \beta > 0$;
- (iii) for all (iu_2, v_1) such that $v_1 \leq -n(1 + u_2^2)/2$,

$$\begin{aligned}
Re\{\phi(iu_2, v_1)\} &= \gamma - \beta + \frac{(1-\gamma)v_1}{\alpha} \\
&\leq \gamma - \beta - \frac{n(1-\gamma)(1+u_2^2)}{2\alpha} \\
&= -\frac{n(1-\gamma)u_2^2}{2\alpha} \\
&\leq 0.
\end{aligned}$$

Therefore, the function $\phi(u, v)$ satisfies the conditions in Lemma. This implies that $Re\{p(z)\} > 0$ ($z \in U$), which is equivalent to

$$Re\left\{\frac{f(z)}{z}\right\}^\alpha > \gamma = \frac{n+2\alpha\beta}{n+2\alpha} \quad (z \in U). \quad (2.7)$$

This completes the assertion of Theorem 1.

Letting $\beta = 0$ in Theorem 1, we have

COROLLARY 1. If $f(z) \in B(n, \alpha, 0)$, then

$$Re\left\{\frac{f(z)}{z}\right\}^\alpha > \frac{n}{n+2\alpha} \quad (z \in U). \quad (2.8)$$

REMARK. If we take $\alpha = 1$ in Corollary 1, then we have the inequality (1.3) by Cho [1].

Making $\alpha = 1/2$, Theorem 1 gives

COROLLARY 2. If $f(z) \in B(n, 1/2, \beta)$, then

$$Re\sqrt{\frac{f(z)}{z}} > \frac{n+\beta}{n+1} \quad (z \in U). \quad (2.9)$$

Finally, we derive

THEOREM 2. If $f(z) \in B(n, \alpha, \beta)$, then

$$Re\left\{\frac{f(z)}{z}\right\}^{\alpha/2} > \frac{n + \sqrt{n^2 + 4\alpha\beta(n+\alpha)}}{2(n+\alpha)} \quad (z \in U). \quad (2.10)$$

PROOF. Defining the function $p(z)$ by

$$\left\{\frac{f(z)}{z}\right\}^{\alpha/2} = \gamma + (1-\gamma)p(z) \quad (2.11)$$

with

$$\gamma = \frac{n + \sqrt{n^2 + 4\alpha\beta(n+\alpha)}}{2(n+\alpha)}, \quad (2.12)$$

we easily see that $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \dots$ is regular in U . Taking the differentiations of both sides in (2.11), we obtain that

$$\begin{aligned}
&\frac{f'(z)f(z)^{\alpha-1}}{z^{\alpha-1}} \\
&= (\gamma + (1-\gamma)p(z))^2 + \frac{2}{\alpha}(1-\gamma)(\gamma + (1-\gamma)p(z))zp'(z),
\end{aligned} \quad (2.13)$$

that is, that

$$\begin{aligned}
 & \operatorname{Re} \left\{ \frac{f'(z)f(z)^{\alpha-1}}{z^{\alpha-1}} - \beta \right\} \\
 &= \operatorname{Re} \left\{ (\gamma + (1-\gamma)p(z))^2 + \frac{2}{\alpha} (1-\gamma)(\gamma + (1-\gamma)p(z))zp'(z) - \beta \right\} \\
 &> 0.
 \end{aligned} \tag{2.14}$$

Therefore, letting

$$\phi(u, v) = (\gamma + (1-\gamma)u)^2 + \frac{2}{\alpha}(1-\gamma)(\gamma + (1-\gamma)u)v - \beta, \tag{2.15}$$

(note that $p(z) = u = u_1 + iu_2$ and $zp'(z) = v = v_1 + iv_2$), we observe that

- (i) $\phi(u, v)$ is continuous in $D = C^2$;
- (ii) $(1, 0) \in D$ and $\operatorname{Re}\{\phi(1, 0)\} = 1 - \beta > 0$;
- (iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -n(1+u_2^2)/2$,

$$\begin{aligned}
 \operatorname{Re}\{\phi(iu_2, v_1)\} &= \gamma^2 - (1-\gamma)^2u_2^2 + \frac{2}{\alpha}\gamma(1-\gamma)v_1 - \beta \\
 &\leq \gamma^2 - \beta - (1-\gamma)^2u_2^2 - \frac{n}{\alpha}\gamma(1-\gamma)(1+u_2^2) \\
 &\leq 0.
 \end{aligned}$$

Thus, the function $\phi(u, v)$ satisfies the conditions in Lemma. Applying Lemma, we conclude that

$$\operatorname{Re} \left\{ \frac{f(z)}{z} \right\}^{\alpha/2} > \gamma = \frac{n + \sqrt{n^2 + 4\alpha\beta(n + \alpha)}}{2(n + \alpha)} \quad (z \in U). \tag{2.16}$$

Taking $\alpha = 1$ in Theorem 2, we have

COROLLARY 3. If $f(z) \in B(n, 1, \beta)$, then

$$\operatorname{Re} \sqrt{\frac{f(z)}{z}} > \frac{n + \sqrt{n^2 + 4n\beta + 4\beta}}{2(n + 1)} \quad (z \in U). \tag{2.17}$$

REMARK. If we take $\alpha = 2$ and $\beta = 0$ in Theorem 2, then we have Theorem A by Cho [1].

REFERENCES

1. CHO, N.E., On certain subclasses of univalent functions, Bull. Korean Math. Soc. **25** (1988), 215-219.
2. MILLER, S.S. and MOCANU, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. **65** (1978), 289-305.
3. SINGH, R., On Bazilević functions, Proc. Amer. Math. Soc. **38** (1973), 261-271.

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br