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ABSTRACT. A certain class B(n,c,/) of Bazilevi6 functions of order in the unit disk is

introduced. The object of the present paper is to derive some properties of functions belonging to

the class B(n,a,). Our result for the class B(n,c,) is the improvement of the theorem by N. E.
Cho ([i]).
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1. INTRODUCTION.
Let A(n) denote the class of functions of the form

f(z) z + _, akz
I (n 6. N {1,2,3,...}) (1.1)

k=n+l

which are anaJytic in the unit disk U= {z: I1 < 1}. A function f(z)6. A(n)is said to be a

member of the class B(n, a,) if it satisfies

,f’()f()"- ’}
for some c(c > 0), fl(0

_
fl < 1), and for all z 6. U. We note that B(n,c,fl) is the subclass of

Bazilevi6 functions in the unit disk U (cf. [1]). Also we say that f(z)in the class B(n,a,)is a

Bazilevi function of order ft.
Recently, Cho [1] has studied the class B(n,a,O) when fl- 0, and has proved
THEOREM A. If f(z) 6. B(n, 2, 0) when a 2 and fl 0, then

(z 6. U) (1.3)Re >n
In the present paper, we improve the above theorem by Cho [1].

2. PROPERTIES OF THE CLASS B(n,a,).
In order to establish our main result, we have to recall here the following lemma due to Miller

and Mocanu [2].
LEMMA. Let @(u, v) be a complex valued function,

: D ---, C, D C C2 (C is the complex plane),
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and let u u + iu2, v v + iv2. Suppose that the function b(u, v) satisfies

(i) (u,v) is continuous in D;
(ii) (1,0) 6- D and Re{if(I,0)} > 0;

(iii) for all (iu2,vl) 6- D such that v _< n(1 + u])/2,
Re{ck(iu2, Vl)} <_ O

zn+Let p(z) 1 + pnzn + Pn+ +... be regular in the unit disk U such that (p(z),zp’(z)) 6- D
for all z 6- U. If

Re{ck(p(z),zp’(z))} > 0

then

Re{p(z)} > 0 (z 6- U)

Using the above lemma, we prove

THEOREM 1. If f(z)6_ B(n,a,/), then

Ref) > n + 2a (z 6- U)n+2a

with

PROOF. We define the function p(z) by

@)-- 7 + (1 (2.2)

n
7= n+2a (2.3)

Then, we see that p(z) 1 + pnzn + Pn + zn + + is regular in U.
It follows from (2.2) that

ff(z)f(z)a- (1 7)zp’(z)
za- 7 + (1 7)p(z) + c

or

(2.4)

I, za-

>.
Defiig tge fctio (u, v) by

(,) -+(-)+,
(note that u p(z) d v zp’(z), we hnve that

(i) (u, v)is continuous in D C;
(ii) (1,0) fi D d Re{if(I,0)} 1 # > 0;

(iii) for (iu2, Vl) such that v n(1 + u)/2,

(2.5)
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Re{(iu2,Vl)} 7- + a

n(1 7)(1 4- u22)__<7-- 2

Therefore, the function (u,v) satisfies the conditions in Lemma.
Re{p(z)} > O(z E U), which is equivalent to

{f(-} (z u)+R >7= n+2"

This implies that

(2:0

This completes the assertion of Theorem 1.

Letting/3 0 in Theorem I, we have

COROLLARY 1. If f(z)e B(n,a,O), then

Re > n +2 (zeU) (2.8)

REMARK. If we take a 1 in Corollary 1, then we have the inequality (1.3) by Cho [I].
Making a 1[2, Theorem 1 gives
COROLLARY 2. If f(z). B(n,l[2,), then

Re@ > n + (z . U)n+l (2.9)

Finally, we derive

THEOREM 2. If f(z)e B(n,a,), then
a/2

{(_} + +4(+)R > 2(n +a) (z e U). (2.10)

PROOF. Defining the function p(z) by

with
/@} 7 4- (1 7)p(z) (2.11)

7 2(n 4- a) (2.12)

we easily see that p(z) 1 + pnzn + Pn + zn+ + is regular in U. Taking the differentiations of

both sides in (2.11), we obtain that

f,()f(),- (2.13)

(V 4- (I 7)p(z))2 + -(I 7)(V 4- (I 7)p(z))zp’(z),
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that is, that

[ za-I -/}
Re{(’l / (1 3’)p(z))2 + g (1 3’)(3’ -t" (1 3")p(z))zp’(z)- }

(2.14)

Therefore, letting

b(u, v) (3’ -I- (I 3’)u)2 -I- 2(I 3’)(3’ -I- (1 3’)u)v ,
(.ot that p() =. . + i,, d p’() v ’h + iv2), w obv that

(i) b(u, v)is continuous in D C2;
(ii) (1,0) D and Re((1,O)} 1 > O;
(iii) for all (iu2,v) D such that v <= n( + u)/2,

(2.15)

Re{b(iu2, v } 7
2 (1 3’)2u] + -3’(1 3’)v

3’2 _/ (1 3’)2 u22- 3’(1 3’)(1 -{" u22)

Thus, the function b(u, v) satisfies the conditions in Lemma. Applying Lemma, we conclude that

{(_} +q+4(. +)R > 3’ 2(n -l- c) (z e U). (2.16)

Taking a 1 in Theorem 2, we have

COROLLARY 3. If .f(z)6. B(n,1,/), then

feR > 2(n’+ (z 6. V). (2.17)

REMARK. If we take a 2 and 0 in Theorem 2, then we have Theorem A by Cho [I].
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