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Abstract. It has been shown that a totally real surface in CP? with parallel mean curvature vector and

constant Gaussian curvature is either flat or totally geodesic.
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1. INTRODUCTION.
Let J be the almost complex structure on CP? and g be the Hermitian metric on CP? of constant

holomorphic sectional curvature 4. If V is the Riemannian connection with respect to g and R is the
curvature tensor of V, then

Vx)(¥) =0, (1.1)
RX,Y)Z =g(Y,Z)X -g(X,Z)Y +g(JY,Z)JX - g(UX,ZVY +2g(X,JY)JZ, (1.2)
where X, Y, Z are vector fields on CP2.

Let M be a 2-dimensional totally real submanifold of CP? and v be the normal bundle of M. If (M)

is the lie-algebra of vector fields on M, then for each X € x(M), JX € v. The Riemannian connection V
induces the Riemannian connection V on M and the connection V* in the normal bundle v. We then have
the following Gauss and Weingarten formulae

Vi Y =V Y +h(X,Y), VyN =-AyX + Vy*N, X, YEx(M), NE, (1.3)
where h(X,Y) and Ay X are the second fundamental forms and are related by g(h(X,Y), N) = g(Ay X, Y).
The mean curvature vector H of M is given by
H =(1/2)Zh(e;e),
where {e,,e,) is a local orthonormal frame on M. If H = 0, then M is said to be a minimal submanifold of
CP2 1t is known that if M is a minimal totally real surface of constant Gaussian curvature in CP? then
either M is flat or totally geodesic (cf. [2]). The mean curvature vector H is said to be parallel if

Vit H =0, X €x(M). In this paper we consider the totally real surfaces of constant Gaussian curvature
with parallel mean curvature vector in CP.
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The Gaussian curvature K of M is given by

K =1+g(h(X,X), 2h(Y,Y))-g(h(X,Y), h(X,Y)), (1.4)
where {X,Y} is an orthonormal frame on M. The Codazzi equation gives
(Vi h)(Y,Z) = (Vy h)(X,Z), X,Y,Z Ex(M). (1.5)
For a totally real surface M, using (1.1) and (1.3), we get
h(X,Y)=JAp X, V' JY =JV, Y, X,Y Ex(M). (1.6)
Using (1.6) and the symmetry of #(X,Y), we have
gh(Y,Z2),JX)=gh(X,Y),JZ)=g(h(X,Z),JY), X,Y,Z €ExM). (1.7)

2. MAIN RESULTS

THEOREM 2.1. Let M be a connected totally real surface in CP? of constant Gaussian curvature ¢
with parallel mean curvature vector. Then either M is flat or totally geodesic.

PROOF. Let UM = {X €ETM:|X|| =1} be the unit tangent bundle of M. Define the function
f:UM — R by F(X) = g(h(X,X),JX), which is clearly a smooth function. First suppose that fis constant.
Then f(-X)=-f(X) gives f{X)=0 and therefore g(h(X,X),JX)=0, X € UM. Now consider a local
orthonormal frame {X,Y} on M. Then we have g(h(X,X),JX) =0, g(h(Y,Y),JY) =0,

g(h(X+Y,X+Y) J(X+Y)) -0 g(h(X-Y’X-Y) J(X-Y)) -0
V2 V2 )\ V2 ’ V2° V2 )\ V2
These equations, in view of (1.7), imply that g(h(X,X),JY)=0, g(h(Y,Y),JX)=0, g(h(X,Y),JX)=0,
and g(h(X,Y),JY) = 0. Since {JX,JY} is a local orthonormal frame in the normal bundle v, we conclude
that h(X,X) =0, h(X,Y) =0 and A(Y,Y) = 0, which means that M is totally geodesic.

We therefore assume that fis not a constant. Since the unit tangent bundle UM is compact, f attains
amaximum atsome e; € UM. Itis known that g(h(e,, e,),JY) = 0 for any vector in TM which is orthogonal

to e, (cf. [1]). Choose e, such that {e,,e,} is an orthonormal frame on M. Then we can set
h(e,e) =ale, h(e,e))=pJe, +vle, and h(e,e,) =pJe,, 2.1

where @, and y are smooth functiens. Using the structure equations of M we have locally
V.ei=ae, V e,=be, V, e,=—-ae, V, e =-be, (2.2)
where g,b are smooth functions. Inserting different combinations of the frame vectors e,, e, in (1.5) and
using (2.1) and (2.2) we get, upon equating components,
e *Pf=ay+2bP-ba, e,ca=a(a-28), e;*B-e, *y=3ap-by. (2.3)
Since the mean curvature vector H = (1/2) (h(e,, e,) + h(exe,)) is parallel, we have
V.. (h(ener) +h(eye))) =0 and V. (h(ey,e,) +h(eyey) =0.
Using (1.6), (2.1) and (2.2) in the above equations we conclude, upon equating components, that
e (a+p)=ay, e -y=-a(a+p) (24)

e (@+B)=-by, ey=b(a+p). @5)
From (2.3), (2.4) and (2.5), we have
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e,ca=b(a-2f), e -P=av+2bp-ba, e y=-a(a+p),

e,ca=a(a-2f), e, PB=-by+2af-aa, e,*y=b(a+p) 26)

In view of (2.1) and (1.4), the Gaussian curvature c is given by ¢ = 1 +aff - B> If we operate on this
equation by e, and e, with ¢ constant, and use (2.6), we obtain
(a-2B)(ay +b(3p-a)) =0 and (a-2B)(-by+a(3p-a))=0. 2.7)

We have two cases:

Case (i). Suppose a = 2, then the two equations in (2.7) give (a* + b%)y = 0 and (a” + b2) (3 - @) = 0.
Ifa® + b2 =0, then from (2.2) it follows that M is flat (as c is constant). If a®+b? = 0, then we havey = 0
and 38 —a = 0. Since a and b cannot both be zero and y = 0 it follows from equations (2.4) and (2.5) that
a + B =0. Thus we have y = 0 and a + f = 0, which implies that H = 0, that is, M is minimal.

Case (ii). Suppose a =28. Then from (2.6) we get that a is constant, and consequently f3 is also

constant. With a = 2f and f constant equations (2.6) give ay =0 and by = 0. Thus eithera =b =0 or
y = 0, which results in either M being flat or y = 0. If M is not flat, that is, not both a and b are zero, and
y = 0, then from (2.4) and (2.5) we get a. + = 0. This shows that H = 0. Hence either M is flat or minimal.
But since a minimal totally real surface is constant curvature in CP? is either flat or totally geodesic [2],
the theorem is proved.

In the following we first prove that in any submanifold of a Riemannian manifold if the second
fundamental form is parallel, then the mean curvature vector is parallel. Though this is a simple observation,
it does not seem to appear in the literature and is worth mentioning. As a corollary then we obtain the same
result as in Section 2 for the totally real surfaces of CP? with parallel second fundamental form.

THEOREM 2.2. Let M be a submanifold of a Riemannian manifold M with parallel second fun-
damental form. Then the mean curvature vector of M is parallel.
PROOF. Suppose dimM =n. Then for a local orthonormal frame {e,e,,...,e,} of M, the mean

curvature H is given by
H=(1m) 3 hie,e).

Since the second fundamental form is parallel we have
(Vyh)(Y,Z)=Vy* h(Y,Z)-h(Vy Y,Z)-h(Y,Vx Z) =0 for X,Y,Z € x(M).

Thus for each frame vector e; we can write
V' h(e,e)=2h(Vye,e).

Adding these equations we get

AV H=2 .ilh(v,, €,€).

Let coj be the connections forms on M. Then we have
Ld .
Vye; = .Elo)ﬁ(x)ei.
i=

Substituting this into the above equation we get
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nVy'H =2 3 wi(X)h(e,e).
ije=1

Since w}(X) = —wj(X) and h(e;, €;) = h(e;, €;), we conclude that Vi* H = 0, X € x(M).
As a direct consequence of this theorem and the theorem in the previous section we have
COROLLARY 2.1. Let M be a connected totally real surface in CP? with parallel second fundamental

form and constant Gaussian curvature. Then M is either flat or totally geodesic.
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