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ABSTRACT. We study subclasses of the class of uniformly starlike functions which were recently
introduced by A.W. Goodman. One new subclass is defined and it is shown that it shares many

properties of the parent class.
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1. INTRODUCTION.

Let ST be the class of analytic univalent functions f in the unit disk D = {|z| <1} that are
normalized by f(0) =0, f(0) =1, and that are starlike with respect to the origin. The subclass of
uniformly starlike functions (UST) consists of normalized analytic function f in D such that for
each ¢ in D and any arc v in D of a circle with center at ¢ is mapped by f onto an arc f(y) that is
starlike with respect to f(¢). This class was recently introduced and studied by A.W. Goodman [1]
who proved in particular the following analytic characterization.

THEOREM A. Let f be analytic in D, f(0) = f’(0)—1 =0. Then f is in UST if and only if
_fx)=F() _
Q(z() = G-0f2) (2#() and Q(z,2) = 1 (1.1)

has positive real part for all z and ¢ in D.

Properties of the class UST are difficult to establish. One reason is that the usual
transformations of univalent function theory generally do not preserve the UST class. The only
known exceptions are rotations, e *®f(e®z) for some real a, and the transformation t1f(t2),
0<t<Ll. -~

In order to obtain a coefficient bound |a,| <2/n (n=2,3,..) for f(z) =z+ Y_ apz" in UST,

n=2

Goodman proves that class UST is embedded in a larger subclass of starlike functions UST*. A
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function f € ST is in UST* if there is a real a such that Re{e®f/(z)} >0 for z € D. (Goodman
credits the result to Charles Horowitz.) This suggests that information about the UST class might
be generated through the study of subclasses of UST as well. In this paper we study one such class
that shares and extends some known properties of UST.
2. SOME SUBgLASSES OF UST. o .

If f(2) =jzoa 27 and  g(2) =j¥ob sz are analytic in D, the Hadamard product

oo} .
(f*g)(z) = Z a jbjz-’ is also analytic in D. In particular, if f is a normalized analytic function in
j=0
D, then for all complex numbers a,3,0 < |a| <1,a # 3 we have

1 az) = fr—2 f(az)—f(ﬁz)= « z Naz) = fx z
af( ) f T—az’ o — f (l—az)(a—ﬂz)’zf(a) f m (21)

These identities lead to an equivalent form for Theorem A.
THEOREM 1. Let f be a normalized analytic function in D. Then f € UST if and only if for
all complex numbers a,8, |a| <1,|8| <1, and for all z € D we have

fx &
Rc{%wi)} >0. (22)

(1-az)?

In this form we can appeal to the extensive work on Hadamard products initiated by the proof
of the Polya-Schoenberg conjecture by Ruscheweyh and Sheil-Small [4]. The fundamental result in
this proof was the following theorem [4].

THEOREM B. If ¢ is a normalized convex univalent function in D and g € ST, then for all

zeD
*(F
Rg{ﬂ,(*gg)} >0. 23)

whenever F is an analytic function with positive real part in D.

These results, along with the following elementary observation about certain linear fractional
transformations enable us to generate functions in UST from functions in the convex subclass K of
ST.

LEMMA. Let p>0 and let D={]z| <1}. Then Re{(1 —apz)/(1 — Bpz)} >0 for z € D and
for all @,B in D if any only if p <1//2.

The proof follows by considering the image of | z| =1 under the transformation

_(—apz)
T=0=%n)"

THEOREM 2. I f € K, then \2f(z/\2) € UST. The radius p = 1/y2 is best possible.
PROOF. Let f€ K. Since z/(1 —apz)? is in ST when |a| <1,p € (0,1), we conclude from
Theorem B and the Lemma that for z € D

1—apz z
Re { . ;*ﬁ___,p}:) Lol } >0
(1 —apz)

for all a,8€ D,0<p<1/2. But f+g(pz)/p=g+f(pz)/p. Hence, the expression above can be



SUBCLASSES OF UNIFORMLY STARLIKE FUNCTIONS 451

rewritten as

Re { % flpz) (1- ,Bz)z(l —az)
pf (p2)* = )2
where 0 < p <1/N2. By Theorem 1 we have %f(pz) € UST when 0 < p <1/42. For the convex
function f(z)=2/(1—2), Theorem 1 states f(pz)/p=2/(1—pz)€ UST if and only if Re
{@—eapz)/(1—PBpz)} >0 for z€ D, |a| <1,|B| <1,p>0. This is the case by the Lemma only
if p <1/N2. The result is sharp. QED.

Goodman [1] proved z/(1 — Az) € UST whenever | A| <1/2 which in particular establishes
the sharpness of Theorem 2. This function, however, is also in UST* D UST.

The function z/(1 — pz)? is starlike of order a = (1—p)/(1+p). Now a normalized analytic
function f is said to be in the class R, of prestarlike functions if f*z/(1—z)2 =2 is in the class
ST, of starlike functions of order a when a <1 or Re{f(z)/z} > 1/2 when a =1. Ruscheweyh [5,
p. 54] proves a generalization of Theorem B to the case where ¢ € R, and g € ST,. By an
argument that is similar to the proof of Theorem 2, we obtain the following result.

THEOREM 3. If f is in the class R, of prestarlike functions of order o, then F(z) = f(pz)/p is
in UST whenever p = (1 —a)/(1 +a) and (2-1)/2+1)<a< 1.

Except for the sharpness, Theorem 2 is a special case of Theorem 3 since Ry= K C R, for
0 < @ <1. The link between the convex case and the fundamental Theorem B is our justification of

}EOZED,IaISI,IﬂISI,

first proving the less general result.

It is interesting to note that for @ > 1/2, the class R, contains functions that are not univalent
in D [6]. The function F of Theorem 3 is, of course, univalent and starlike in D.

To obtain another subset of UST, notice that

f&)=£0) 1 ,
T =7 o f e+ - 00t (24)

THEOREM 4. Let f be a normalized analytic function in D. Then f € UST if for all w,z in

f’(w)}
Re >0.
{f "(2)
If f € UST, then for all w,z in D
7)) "
Re{x—¢ 20
it 2

and the 1/2 is best possible.

PROOF. The first part of the theorem follows from Theorem A and the real part of (2.4).
For the second statement, we note that for f € UST

| a_,g{ (w) = £(2) f,%z)}, <xpr.

Hence,

1/2
f'(w) 1, . fw-fz 1,1 v ‘o
| ug{f’(z)} | Szl ag—w—z ‘Esl +2| a.rg—f(w)_f(z)f( ) <7/2.

The function f(z) = z/(1 — pz) with p = 1/{2 proves the exponent 1/2 is best possible.
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The condition Re {f'(w)/f(2)} >0 for z, w€ D implies f(D) lies in a quarter plane that
contains 1. Indeed, f'(0)=1 and f'(w)#itf'(z) for any real t. The condition Re
{f'(w)/ f'(z)}l/ >0 implies f'(D) lies in a half plane containing 1. This is the result of Goodman
and Horowitz that proves UST C UST*.

COROLLARY 1. 1] If f(z)=z+ z a; 27 as in UST, then there is an a, — 7/2 < a < 7/2

such that e/®f/(z) has positive real part njx D. Furthermore, |a,| <2/n (n=2,3,...).
The sharp bounds for the coefficients of f € UST is an elusive open problem. Some
information for this problem is contained in the next theorem.
THEOREM 5. For any integer n > 2, the function f(z) = z+ Az"isin UST if |A| < % .
PROOF. Since e **f(e'“2) is in UST whenever f is, we assume A > 0. For w # £ nonzero in

D, we have

f)~f€) 1 _1+A@" '+ 4.4l
w—¢§ Fflw) ™ 14+ nAw™~ 1

Replace w, and ¢ respectively by zl/("_l), az'/ =1 yhere |a] €1, a#1. The above

expression becomes

14 AQl4+e+a®+..+a" )z 14+ ACz+Az
1+nAz T 14nAz

where ( =a+a?+..+a"~!. The image of |z| =1 by this linear fractional transformation is a

circle with center ¢ and radius R given by

1—nA2(C+1)R |1+A((+1) _ l—nA2((+l)l _

1-n24% 1+nA 1-n?A2 _|1—nA2||("_1)_CI‘

The image is in the right half plane if

[(n=1)=¢]| _ll—nA2(Rcc+1)

|1-nA?| n?A? -

Since |¢| = |a+a?+..+a" 1| <n—1, the inequality holds when
A2(n-12-2(n—-1)z]<(1- nA2)2 —2nA%(1 — nA?)z + n?42:2
where z = Re (, that is, ‘
n2A%22 + 2(n242 - 1)A%c +1-2(n? —n+1)A%2 +n24%>0.
The minimum of the function of = on the left of this inequality occurs when
z= —(n2A2-1)/n%42.

If we substitute this for z and simplify we obtain

(n—l)(n+1—2n3A2)200r%312A2. QED.

This improves the bound | A| <1/({2n) of Goodman [1). It does not appear to be the best
possible except when n = 2. Godman [1] states that z + Az% € UST if and only if | A| <{3/4. We
prove this result for a subclass of UST in the next section.
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3. THE SUBCLASS USTx.

A rather natural way to construct a subclass of UST is to replace the derivative in (1.1) by a
difference quotient. This generates a family of functions that shares most of the known sharp
properties of the class UST. To be precise, we define USTx as the class of normalized analytic

functions f in D such that
f*z/(1 —az)(1 - Bz)
Re{f*z/(l —az)(1- 'yz)} 20, (3.1)

for all z € D, and o, 3,7 in D. Since v = a reduces (3.1) to (2.2), we have UST, C UST.

The function z/(1-apz)(l1—qpz) for 2€D, p>0 and a,7y€ D is starlike of order
a=(1-p)/(1+p). We conclude from the generalized version of Theorem B that the functions F
of Theorem 3 are in fact in the class UST,.

THEOREM 6. If f is in the class R,, then F(z) = f(pz)/p is in UST, whenever

p=(1-a)/(l+a)and ®2-1)/(2+1)<a<]1.

COROLLARY 1. I f € K, then \2f(z/\2) € UST,. This result is sharp.

To prove the sharpness in the Corollary, we observe from (3.1) that z/(1 — pz) € UST, if and
only if (1 —vpz)/(1 — Bpz) has positive real part for z € D and some p > 0 whenever 7,4 € D. By
the Lemma this requires 0 < p < 1/42.

There is another way to characterize UST, (and UST) that can be useful.

THEOREM 7. Let f be a normalized analytic function in D. Then f € UST, if and only if for
z€D, z#0,

1-4(1+2)y+(1-2)8):

f*(l "zaz) (1-82)(1-12) (3.2)

forall |z| =1 and v,8,a in D.

This result follows directly from (3.1). The expression in braces in (3.1) cannot equal
(z+1)/(z—1),|z| =1, when its real part is positive. This yields (3.2) upon algebraic
simplification.

COROLLARY 2. z+ Az2 € UST, if and only if | 4| <\3/4.

PROOF. If a, is the coefficient of 22 in the power series expansion of the second function in
the Hadamard product (3.2), then with f(z) = z + A2? this product is not zero in D if | Agg| <1.
Now, with a = 1, the second coefficient is ‘

a=1+J1-2zhy+(1+2)8].

Now

lagl < 11+4(v+8)| +317-8]
and we seek a maximum of the right hand side when || <1,|#| <1. A computation shows a
maximum occurs when vy = 1,8 = e',# = 2 arcsin 1/V3. This gives us |ag| <4/43 and proves that
[A| <43/4. Since there is a choice of z, |z| =1, such that |ay| = |1+%(‘7+ﬂ)| +%(‘Y—ﬂ|y
we conclude that the result is sharp.
4. ARC LENGTH FOR THE CLASS UST.

In the final section we state a result on the length of images of circles under UST mappings
which extends a well-known result of Keogh for bounded starlike functions [3]. Let C((,r) be a
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circle centered at ¢ and radius r which is strictly inside the unit disk and let T' be the image of this
circle under the function f which is in the class UST. Furthermore, let
M,.= Max_|f(z)-f(O)I,
lz=¢l =r
and let L, be the arc length of T.
THEOREM 8. Given the foregoing definitions we have
M, || { 1+ ¢ +r
L.<—f—(2 +7) {27 + 4log ——>—— 33
r T|f(ol(|“ r) gl_l("" (33)
where (/f(¢()=1 if (=0. In particular, L, =0 (Iogl—:—lél_——r) This result reduces to Keogh’s
when ( =0.
The technique of the proof of (3.3) is similar to Keogh’s except that we use the following result
of R.M. Gabriel [2].
If u(z) is subharmonic, positive, and continuous inside and on a circle T, and C is a circle
inside T, then
[ue) 1421 < +p/B)[ul(2)1 21,
C r
where p is the distance between centers of C and I' and R is the radius of I'.
ACKNOWLEDGEMENT. The second author thanks Ted Suffridge for his insightful suggestions

and John Anderson for his remarks on Theorem 8.
REFERENCES

1. GOODM;}N, AW., On uniformly starlike functions, to appear in the Journal of Math
Analysis.

2. GABRIEL, R.M,, An inequality concerning the integrals of positive subharmonic functions
along certain circles, J. London Math Soc. V. 5, 1930, 129-131.

3. KEOGH, F.R., Some theorems on conformal mapping of bounded star-shaped domains, Proc.
London Math. Soc. (3) 9 (1959), 481-491.

4. RUSCHEWEYH, ST. and SHEIL-SMALL, T., Hadamard products of schlicht functions and
the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.

5. RUSCHEWEYH, ST., “Convolutions in Geometric Function Theory”, Les Presses de
I’Universite de Montreal, 1982.

6. SILVERMAN, H. and SILVIA, E.M., Prestarlike functions with negative coefficients, Internat.
J. Math. & Math. Sci. 3 (1979), 427-439.



Boundary Value Problems

Special Issue on

Singular Boundary Value Problems for Ordinary

Differential Equations

Call for Papers

The purpose of this special issue is to study singular
boundary value problems arising in differential equations
and dynamical systems. Survey articles dealing with interac-
tions between different fields, applications, and approaches
of boundary value problems and singular problems are
welcome.

This Special Issue will focus on any type of singularities
that appear in the study of boundary value problems. It
includes:

e Theory and methods

e Mathematical Models

e Engineering applications

e Biological applications

e Medical Applications

e Finance applications

e Numerical and simulation applications

Before submission authors should carefully read over
the journal’s Author Guidelines, which are located at
http://www.hindawi.com/journals/bvp/guidelines.html. Au-
thors should follow the Boundary Value Problems manu-
script format described at the journal site http://www
.hindawi.com/journals/bvp/. Articles published in this Spe-
cial Issue shall be subject to a reduced Article Proc-
essing Charge of €200 per article. Prospective authors
should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due May 1, 2009

First Round of Reviews | August 1, 2009

Publication Date November 1, 2009

Lead Guest Editor

Juan J. Nieto, Departamento de Analisis Matematico,
Facultad de Matemiticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain;
juanjose.nieto.roig@usc.es

Guest Editor

Donal O’'Regan, Department of Mathematics, National
University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/bvp/guidelines.html
http://www.hindawi.com/journals/bvp/
http://www.hindawi.com/journals/bvp/
http://mts.hindawi.com/
mailto:juanjose.nieto.roig@usc.es
mailto:donal.oregan@nuigalway.ie

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

