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ABSTRACT. In this paper we consider the Sobolev-Slobodeckij spaces W"’(ffP,E) where E is a strict

(LF)-space, m /(0, =,)\ li and p E[1, oo). We prove that W"’’(gP,E) has the approximation property
providedEhas it, furthermore ifE is a Banach space with the strict approximation property thenW’’’(R’,E)
has this property.
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1. INTRODUCTION.

Let E be a strict (LF)-space and p E[1, oo). LP(E).L’(gP,E) will denote the linear space of all

Boclmer measurable functions (cosets), from P into E such that

Ilfll,, f(x)ll" < (R),

for ,very I1" (), ,,,h,, c(E d,,ot the =t ofa ,tiuou =,inorms on E. W,, pro,,id Z,"(E)

with the topology generated by the family of seminorms {11 I1,: I1" ’s(E)}, which makes it a

sequentially complete locally convex space [3, p. 122]. We shall consider L’(E) canonically embedded

in the space D’(E) D’(gP,E) ofvector valued distributions. Forq E $I, W’e(E) W’’(ffP,E) will denote

the Sobolev space consisting ofall functionsf L’(E) such thatD’fEL’(E) for everya (E1 with ct q
and provided with the family of seminorms:

D".t" d,,,ot= th, ,>p=’ti,, d,rivative of.t’i th n,, of ditribution ,,,,d ’()- f i, ,, fun=tion
defined in fit", with values in C or in E, we define
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H’g(x,y)- g(x)-gO’)
for ktE[O,1].

From now on m (0,)\N, k-m-[m]. e bolev-Slobj space ’(E)-W"(,E) is

defin by

"(E)- {f ’’(E)’H’D*fL’( x,E), a l- [m]}
We provide ’n(E) with Se logy generat by Se family ofmino:

II.,-

for eve 1[-1[ cs(E). ene space ’n(E) is a quentially mplete lally nvex space [6].

t,(E) espa of linear ntuoom Ewie1oofifo nvergence

on precompasub ofE. Wey thatE has Se (s) approximation prony, e [5, p. 2] or 10],
ifentuous linearoram offinite me (sly)den L,(E). (AsubtA ofa locally convex

spa F is quasi-clo ff it nins all e acculation in in F of i unded sub. e
quasi-closure ofA, denotA e intemeion of all qsilod ofFat coninA. We of coupe

have Cbut general CX. DB enA strictly denB [9, pp. 91-92]. e [10] for nher

inoation of Se strict approximation pro.)

Now it is well own Sat Se bolev spas ’(), 1 <p < ,m are omohic to Se

bespasL(0,1). Pelcnsd nator [8] prov at Sis is ale eaniopic case.

ebollobjspas’(), 1 <p < , m (0,w)eomohic Sequence spaces
[11, pp. 273-2]. For m [0,)d 1 <p < e achas’() have an condifional

hauder ba and Se approximation prony. e bolev spas (itropic and iopic) with

valu a Frhet spa E and doma on have Se approximation progy provided E has it d

1 p < w [7].
isrwe prove atebolevlj spas ’(E), 1 p < ,m (0,),E a

strict (L-space ve e approximationoovid Es i eore ’(E) has e sct
approximation pronyE nach spadsesct approxation progy. eprf is bad

on hwent ove Sat me1 spas of disbutio ve e sct approximation
progy [10, . 9-10]. tion I we ovet’(E) Se relig approximation property
10, p. 8]. tion 2 we shall prove Sat ’(E)sSetgappxiation prony [10, p. .

Finally e last ionwe prove atE) scyde ’(E)d Sat ’(E)s Se (sict)
approximation proovidEnach spa)s Se (s) approximation proy.

W’t’(E) has the Regularizing Appreximatiou Preperty

Let gT(ffr’) be the standard space of test functions in fit’. We say that a sequence {l]}s C (ffP) is

regularizing ff

1) vl(x) 0 for all x $P and j ( ,
2) Vl(X) 0 if Ix 1> e and e 0%

3) f rb(x)dx- 1 for all j II.

For rl 0() and ftL"(E) we define the convolution
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* [(x)- [ n(z)(x-z.

Since the space of continuous functions with compact support of ffP into E is dense in L’(E) and using

arguments similar to the scalar case we have:

a) Vl * f (E) @pace of all E-valued infinitely differentiable functions on ffP), D’(Vl * f) (Dq) * f
if a $r’ and for any cs(E), n */11 nil ,.,., ’ ,

b) v * f _q).,(E)- {f.(E) :Df_Le(E) for all ct _l’},

c) ( * f)a converges to fin L"(E).

In this section we prove that

f-l*]’--]" in W"’(E),

uniformly in precompact subsets of W"’’(E).

LEMMA 2.1 Let E cs(E). For fLP(E) andF EL’(ffP ",E), define

and

%(z)- ..-FII ’dxdy "II.-Ell,.

where "r,,.f(x)-f(x-z) and ,T(x,y)-F(x-z,y-z). If ..q CL’(E) (resp. $CL’(gY ffP,E)) is

precompaet then {@;}’e,t (resp. {tlJ,}re, is preeompact in the space Cb(ffP) of bounded continuous

complex functions provided with the supremum norm.

PROOF. We prove it for {@’};e,t, the other part is similar. First observe that the operator defined

by g -%g is continuous in L’(E), the proof is the same as in the case E C. We also have:

1%(z)- %(z)l -I ,Y-/ll,-IIs -sll 1 -II 0’- s)ll, + f-sll, 211f-sll,

Hence the mapping L’(E) Cb(ffP), f-.-, Of, is uniformly continuous and the lemma follows.

LEMMA 2.2. If fL’(E) then the function F :gY gY --E defined by F(x,y)-f(x-y) is

Boelmer-measurable.

PROOF. Since E is a strict (LF)-spaee, E -/rid limEt andf_Le(E) then using the same argument

as in [2, p. 255] there exists a k E !I such thatf(x)GEt almost everywhere. So we can assume that fis a

Bochner-measurable function from 9V to Et and using Pettis measurability theorem, valid for Frchet

spaces, we have thatF is Boehner measurable from 9P 9P inEt soF is Boelmer-measurable from ffP 9P
into E.

LEMMA 2.3. Let I1" cs(E), v D(R’) and fL’(E) such that H’fL’(ffP ffP,E) then

H’(v * f) L’(ffP ffP,E) and
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PROOF. As in Lemma 2.2 we can establish the measurability of the functions (x, y,z) f(x -z),

(x,y,z) f(y -z) and (x,y,z)
hi=) U’ =)-/ -z)l" Now,

Ix_y r,+,x

2.4. LetfLP(E) be such thatH’f.L’(t T’,E) then for eve I1" (e)w have

th estimat

liD-Ill, - f
IIn’D-n711, - fn,(z)V,.lz. (2.2)

where {s}i is a relaring quence.

PROOF. eprf a &reet application ofows’s equaliW.

O. ’(E) the ling approximation proy.

PROOF. By mma2we ve * f ’(E)ovid )andf ’(E). Fuaher

IIn * 1.,, - nll,>ll/ll.,,.
From (2.1) and (2.2) we have

IIo*-o1,. j’,. n(z)%oiz, (2.3)

h’DD H’D*SlI ,, f ris(z)t..,o,,s(z)az (2.4)

Let C W"’e(E) be preeompact, then {D"f" fE} is preeompact in L’(E), and {@z*/" f } is

preeompaet in CS(ffP), hence equieontinuous in compact subsets of ffP. It follows that

n.,(z,,,.,.(z .:l)

uniformly in 1. Similarly

uniformly in al. The theorem follows from (2.3) and (2.4).
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W" (E) has the Truncating Approximation Property

Let (g’) be the space of all bounded C complex functions fdefined in R" such that

sup IOaf(x) l< kCE

We provide B(R") with the topology defined by the family of seminorms {P,}k i- In this section we

prove that W"’’(E) has the truncating approximation property, that is, given a sequence {0i }i e C D(ffP)
such that lim 0 1 in e(ffP) the space of all C= complex functions in R", and such that {0/}i 1 is bounded

in B(R"), then lira 0if- f uniformly in precompaet subsets of W"(E).

LEMMA 3.1. Let 0
_

B(ffP), f. WI"’(E) and II" E cs(E). Then there exists c > 0 depending on

n, p and . only, such that

H*(Of){l, ,:p,(O)II f .,,.
PROOF. Let f WI"’(E)fqe(E) then

O(x)f(x) O(y)f(y) f g’(s)as,

with

g(s)-h(sx+(1-s)y) and h-Of.

By Grothendieck’s lemma [9], g e(R,E). An easy calculation shows that

-1 OXi

Hence

where 7 + 7 1.

We have

P

(3.1)

fix.!1.1 ’(Ofll "dxdy 11 + 12

Now

x -Y >1

,. c,po(O), ll.f if,, (3.2)
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dxdyds

h(x + sz)
p

, co,cor s’ll" C3.3)p

From (3.2) and (3.3) we obtain

H’(0S)II, P,(0)II/II ,.,. (3.4)

Nowlet/ W’(E)and {qi}i"be a relarizingmquence in). Wemnume0anga subsequence

if neces) mat n, * fox)-x)ll converges m zero almost evehere in. t * f, men

IIH’(ODII, cpx(o)llll ,., cp,(o)ll fll x.,.

Taking e limit asj rends m infinity we ta, by Fatou’s lena,

L3.2. t cs(E). en ere exism c > 0 dending on n,p and only such at

for eve () and [ ’t(E).

PROOF. We ve
p

-., i_y.
We clearly have

by Lemma 3.1

H’nt’OD’.fll,, c..,(O)IIf
for I, I+ I I- [,,,J and x I< Ira].

Finally it ltx I- r,,l

s,,. s. IIH’(OO:DII’# IIH,(<,S)II,y"+

As in Lemma 3.1 we can bound the first integral by o(O)lS’ll .., and

(3.6)

(3.7)

(3.8)

f ! llH.(ODS)H,tr 2,,.f j io(x)]" IDIx)-D:RY)II"
i:- i., i- Ix -y I"+ dxdy

n"/)ll o@) o0,) I"
Ix-yl"+

and since o() o0, I’: p,(o) Ix y I, w hve
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S ! IlH*(OD’711"dxdyCp(O)II!"II’"" (3.9)

The lemma follows form (3.5), (3.6), (3.7), (3.8), (3.9) and Leibnitz’s formula.

LEMMA3.3. Let 11- _cs(E)and {f.}.ell CL’(E) If{llf.[[ }.ell and {llH’f.[I }.ellare Cauchy
sequences in L’(t") and L’(P t")respectively, en for any truncating sequence {0,,}. e we have

H*(1 o.)/. II, o.
PROOF. Let in > 0 and qt. 1 0.; n t !I

,,H’illff.,,. f ,r!-Ilf’(x)p ’H’"(x’Y)’dxdy]
u’

+[f ,! ill’(x) ’ IlHf.(x.Y)[[Pd.xdY

Let ll and I2 denote the first and second brackets respectively.

si= llnT.II is Cauehy sequence inL’( P) and . 0 pointwise boundedly, we have that

I2 0 as n goes to infinity. I’ can now be written as the sum of three integrals

j- [ [ II/.(x)]l" IH,.(x,y) dry,

Now as in the proof of Lemma 3.2 we can see that

With similar arguments we see that

j,. 2,,,/f f S,,,(x,/i .. ,.(x, d . d,z 2.,,,,, fro., f
4i.(y,

dydx, Iz"+---+ II/.@)11" r+>,,,Iz-I>l
x-y

si .ll CauhyuinL<). takgMm nough. n th trm volvig , f.ll
can be made arbitrarily small, all the other terms tend to zero by Lebesgue’s dominated converge theorem
and the fact that ,, converges to zero uniformly in {x: Ix IM}.

THEOREM 3.4 W"’(E) has the truncating approximation property.
PROOF. Let {0i}ie . be a truncating sequence, II" <E) n W"<E) b precompact.

Assume that there exists a sequence {f, }, e i C such that

for some e >0 and some subsequence {0,},,e I Since q is precompact we can assume that

{lIDT.ff }., d {H*DT.8 }., Cuhyu U<) nd ’(") respectively, for
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by I.emma 3.3 we have

H’(1 0j,,)D ]’,ll,
If 13 < c and (z ]-[m] we also have ]]H’D’-(1 -0,)Df,[I , 0 which contradicts 3.10.

It follows that II(1 0r)l[ ,,., 0 uniformly on ..
4. The Approximation Property ofW(E)

Let {vl)i e m and {0) m be regularizing and truncating sequences in D(R’). For each and j define

the operators in W"P(E)

(n,} (f) n, * f
and

By Theorems 2.5 and 3.4, we have that the identity I in W"’(E) is in the quasiclosure of { {rl} [0j]

i,j ll} in f.,c(W"’(E)); note that the previous set is bounded in ,c(W"’(E)). In particular (E) is dense

in W"P(E), where q(E) is the subspace of e(E) whose elements have compact support.
L. Schwartz in [10] uses a weaker definition of the approximation property, strict approximation

property, than Cn’othendieck’s definition since it is built on the bomology of all the absolutely convex

compact sets. In the next theorem, we shall use the following proposition proved in [10, p. 7].
PROPOSITION 4.1 Let E be a locally convex space, F is a linear subspace of E with a locally

convex topology finer than the topology inherited from E. If the identity I is an accumulation point (strict)
ofL(E,F) inLc(E) and ifFhas the (strict) approximation property thenE also has the (strict) approximation
property.

THEOREM 4.2 1. IfE is a strict (LF)-space and has the approximation property then W"’(E) has

this property.

2. IfE is a Banach space with the strict approximation property then W"’(E) has this property.

PROOF. 1. Let (l)i e a and (0i)i be regularizing and truncating sequences in g(P) respectively.

Consider the following diagram:

T 1 * 0T
k

w-. L() ’() O(),

where h is the canonical injection, and (E) has the inductive limit topology. Note that all functions of

the diagram are continuous. This implies that

({h} [0j]: j,k, E/If} CZ,(W"’’(E),

and by Theorems 2.3 and 3.4 the identity I belongs to the quasiclosure of Z,(Mm’’(E), ggE)) in the space

Z,,(W’"(E)). Now (E) is topologically isomorphic to a numerable locally convex direct sum of copies

ofs ).E 1, Theorem 4] (where s denotes the space of all rapidly decreasing sequences). Hence e) has

the approximation property since s has it [5, (’T), p. 284 and (2), p. 245].
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2. The proof is similar to part 1 taking in account that q(e) has the strict approximation property

since it is topologically isomorphic to (ffP) ),E [9, prop. 9, p. 108] and (R’) has the strict approximation
property [10, prop. 1, p. 6]. Applying [10, case 2, p. 48] we complete the proof.

Let E be a strict (LF)-space, p [1, oo) and (m) a strictly increasing sequence in (0, oo)\ B. We

define Wc"AP(E)- " W"a’(E) and endowed it with the topology generated by {ll I1.,," i N,
i-1

II-II cs(E)}.
COROY 4.3 W’A’(E) has the approximation property ifE has it.

PROOF. If j denote by lij" W’’e(E)- W"a’(E) the canonical injection, here we use Lemma

3.1, then (W"’P(E),Ij) is a projective sequence. Furthermore, W"ia’(E) is topologically isomorphic

to the projective limit of this sequence. Since D(E) is dense in each W (),Its) is a reduced

projective limit and using Theorem 4.2 and [5, (7), p. 247] we have that Wt’A’(E) has the approximation

property.
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