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ABSTRACT. In this paper we consider the Sobolev-Slobodeckij spaces W™?(R", E ) where E is a strict
(LF)-space, m €(0,)\ N and p €[1,®). We prove that W™?(R*,E) has the approximation property
provided E has it, furthermore if E is a Banach space with the strict approximation property then W™?(R", E)
has this property.
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1. INTRODUCTION.
Let E be a strict (LF)-space and p €[1,0). L?(E)=LP(R",E) will denote the linear space of all
Bochner measurable functions (cosets), from R into E such that

Up
If1, - i]lf(x)l’dx] <o,

for every || * | € cs(E), where cs(E) denotes the set of all continuous seminorms on E. We provide L?(E)

with the topology generated by the family of seminorms {|| |, :| *| €cs(E)}, which makes it a
sequentially complete locally convex space [3, p. 122]. We shall consider L?(E) canonically embedded
in the space D'(E) = D'(R", E) of vector valued distributions. Forq €N, W*P(E) = W*P(R", E) will denote
the Sobolev space consisting of all functions f € L?(E ) such that D°f € L?(E) foreverya EN" with|a | <q
and provided with the family of seminorms:

710 =(,3,0071,7) "

D°f denotes the a-partial derivative of fin the sense of distributions and | | € cs(E). If g is a function
defined in R*, with values in C or in E, we define
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H'g(x,y)-,g:—x_);—ﬁ% for A€[0,1].
From now on m €(0,©)\N, A=m —[m]. The Sobolev-Slobodeckij space W™?(E)=W™?(R",E) is
defined by
W)= {fEW"™(E): H'D’fEL* (R xR",E), |a|=[m]} .

We provide W™?(E) with the topology generated by the family of seminorms:

71wy = (00 + 3 1 DL)

for every || » | € cs(E). Then the space W™P(E) is a sequentially complete locally convex space [6].
Let L (E) be the space of linear continuous operators in E with the topology of uniform convergence

on precompact subsets of E. We say that E has the (strict) approximation property, see [5, p. 232] or [10],
if the continuous linear operators of finite rank are (strictly) dense in L (E). (A subsetA of a locally convex
space F is quasi-closed if it contains all the accumulation points in F of its bounded subsets. The
quasi-closure of A, denoted A is the intersection of all quasi-closed sets of F that contain A. We of course
have A CA but in general A »A. IfA D B then A is strictly dense in B [9, pp. 91-92]. See [10] for further
information of the strict approximation property.)

Now it is well known that the Sobolev spaces W™?(R"), 1 < p <o,m € N are isomorphic to the
Lebesgue spaces L?(0,1). Pelczynski and Senator [8] proved that this is also true in the anisotropic case.
The Sobolev-Slobodeckij spaces W™?(R"),1 < p <, m € (0, »)\Nare isomorphic to the sequence spaces
17 [11, pp. 273-290]. For m €[0,) and 1 <p < o the Banach spaces W™?(R*) have an unconditional
Schauder base and so the approximation property. The Sobolev spaces (isotropic and anisotropic) with
values in a Fréchet space E and domain on :R”* have the approximation property provided E has it and
l=sp <»[7].

In this paper we prove that the Sobolev-Slobodeckij spaces W™?(E), 1<p <o,m €(0,0)\N,E a
strict (LF)-space have the approximation property provided E has it, furthermore W™”(E) has the strict
approximation property if E is Banach space and has the strict approximation property. The proof is based
on Schwartz argument to prove that some scalar spaces of distributions have the strict approximation
property [10, pp. 9-10]. In Section 1 we prove that W*?(E) has the regularizing approximation property
[10, p. 8]. In Section 2 we shall prove that W™?(E) has the truncating approxifnation property [10, p. 7].
Finally in the last section we prove that (E) is strictly dense in W*?(E) and that W™ (E) has the (strict)
approximation property provided E (Banach space) has the (strict) approximation property.

2. W™?(E) has the Regularizing Approximation Property
Let D(R*) be the standard space of test functions in :*. We say that a sequence {;},y C (") is

regularizing if
1) mix)=0 for all xER" and jEN,
2) nix)=0 if |x|>¢; and g —0",

3) [ nkxMx=1 foral jEN.
»

Forn € D(R") and f € L?(E) we define the convolution
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n*fix)- j nG)fx -2)dz .
R

Since the space of continuous functions with compact support of R” into E is dense in L?(E) and using

arguments similar to the scalar case we have:

a) M * fEE(E) (space of all E-valued infinitely differentiable functions on R*), DM * ) =DM * f
ifa EN" andforany | | Ecs(E), [n*f], = ""l“u(w)"f"p’

b) n*fED,E)={fEE):D°fEL"(E)foralla EN'},

c) (m;* f)je, converges to fin L?(E).

In this section we prove that
L= *f—f in WME),

uniformly in precompact subsets of W™”(E).
LEMMA 2.1 Let| || Ecs(E). For fEL?(E) and F EL?(R" x R*,E), define

Up

wz)-[ [1es-fra| -os-n,
.o

and
p

W, (2)- =l F -Fl,.

L L |t o — F| 7 dxdy

where Tf(x)=f(x -z) and 7, F(x,y)=F(x -2,y -z). f ACL*(E) (resp. BCLP(R"xR",E)) is

precompact then {®} ., (resp. {Wr}.c,) is precompact in the space C*(R*) of bounded continuous
complex functions provided with the supremum norm.
PROOF. We prove it for {®;} ., the other part is similar. First observe that the operator defined

by g —* t.g is continuous in L?(E), the proof is the same as in the case E = C. We also have:
|042) - @,)| =| Ief -, - w8 -8l,| <|w(-&), +If-gl,=2If-¢l,-

Hence the mapping @ : L?(E) — C*(R"), f — ®,, is uniformly continuous and the lemma follows.
LEMMA 2.2. If fELP(E) then the function F : R* xR* — E defined by F(x,y)=f(x -y) is
Bochner-measurable.
PROOF. Since E is a strict (LF)-space, E = ind limE, and f € L*(E) then using the same argument
as in [2, p. 255] there exists a k € N such that f(x) € E; almost everywhere. So we can assume that fis a
Bochner-measurable function from :i* to E, and using Pettis measurability theorem, valid for Fréchet

spaces, we have that F is Bochner measurable from R* x R” in E, so F is Bochner-measurable from R* x R*
into E.

LEMMA 23. Let |- | Ecs(E), n EDR") and fEL?(E) such that H'f EL?(R" xR, E) then
H'M* ) EL " xR",E) and
1H 0> D, < Il gl H S, -
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PROOF. Asin Lemma 2.2 we can establish the measurability of the functions (x,y,z) — f(x -z),
@1 lfe-2)-fy -2

(x,}’rz)"f()’-z)aﬂd (X,)':Z)" Ix_yrnph ° NOW,
P vp
. 2)(fx -2) - fly -2))
IH@=*n|, = n s dz | dxdy
P { J;‘ LI _L lx_y [ p+) I }

up

@ | -2)-fy-2) .|
[ fespe=te] o)

Up
| fx-2)-fy -2)|* , .
s Lln(Z)l{L. J,‘,.|(x-z)—(y—z)|"” y} “

Minkowski’s inequality

=0l oI H A, -

LEMMA 2.4. Let f € L?(E) be such that H f € L?(R" x R*, E ) then for every || * | € cs(E) we have

the estimates

15-£l,= f n(2)@(z)dz 2.1)
|HG-HTl, = [0, (), 22)

where {n);}, .y is a regularizing sequence.

PROOF. The proof is a direct application of Minkowski’s inequality.
THEOREM 2.5. W™?(E) has the regularizing approximation property.
PROOF. By Lemma 2.2 we have ) * f € W™?(E) provided ) € D(R") and f € W™P(E). Further

ln 'f“.,, = ||'1|,,nm||f||-.p :

From (2.1) and (2.2) we have

|D%-D°Al, < I @, (2)z 23)
»
|x"D%;-H'D| = I N2, (2 )2 , @4)
»
for|a|s[m]and|B |- [m].

Let 8 C W™?(E) be precompact, then {D°f : f € B} is precompact in L?(E), and {tDD., :fEB}is

precompact in C*(R"), hence equicontinuous in compact subsets of }*. It follows that

[ ne@e, )=, 0-0,
L3

uniformly in 8. Similarly

f @),y 2z 0,
=

uniformly in 8. The theorem follows from (2.3) and (2.4).
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3. W™’ (E) has the Truncating Approximation Property
Let B(R") be the space of all bounded C* complex functions f defined in R* such that

pi(f) = sup | Df(x)|<», kE N.

lajsk
xeR

We provide B8(R") with the topology defined by the family of seminorms {p,}, . x - In this section we

prove that W™?(E)) has the truncating approximation property, that is, given a sequence {ei}i < CO®R")

such that lim 6; = 1 in &(3R") the space of all C” complex functions in ", and such that {8,}, ¢  is bounded

j—o

in B(R"), then lim 6,f = f uniformly in precompact subsets of W™*(E).
) Bnd @

LEMMA 3.1. Let8 € 3(R"), fE W"P(E)and || * | € cs(E). Then there exists ¢ > 0 depending on

n, p and A only, such that

IH'®N], scp®)f] 1, -
PROOF. Let f€ W"P(E)Ne(E) then
1
8(x)f(x) - 8 )f(y) = [ gs)s,

with
g(s)=h(sx +(1-s)y) and h =06f.

By Grothendieck’s lemma [9], g €€(R,E). An easy calculation shows that

1

1
I g6)s =5 [ (%h(m(l-s)y)ds(x..-y;).
Hence

! P
|66 -00)0N" a7 x5 1 5, [ | s va-om] @,

1 1
where - +—== 1.
I 2 4

We have

L L | B @) dxdy - [

|x<y|>1 |x=y <1
Now
. [6G) P [fex)]? ” el ’_ ,.
il B ey S p“‘””( J.ler“”) A=l 1AL

[ 1vEenlady s [ [ |H @) dxdy =1+

(3.1)

(3.2)
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ILs in””' l lléh(sx+(l_S)Y)||’dxd ds
s J;) le-Jy‘Iq Ix_yr”’opl) 4
I L
el ]

. 1
-3 n"’"J'

LS|

0 |z|s1

= c,py(08Y “f“: .
From (3.2) and (3.3) we obtain

1 ah P
——-—Izr,m_,)f I;‘ (x+sz)| dxdzds
%

“H.(eﬂ" P = cpl(a)nfll Lp*

(3.3)

(3.4)

Nowletf € W"?(E)and {n; }; enbearegularizing sequence in (R"). We can assume (taking a subsequence

if necessary) that | n; * f(x) - f{x)|] converges to zero almost everywhere in R". Let f; =7; * f, then

VH @O, <cp®Ifl,, sco®Ifl,, -
Taking the limit as j tends to infinity we obtain, by Fatou’s lemma,

1H'@Nl, scp @S], -

LEMMA 3.2. Let| « || Ecs(E). Then there exists ¢ >0 depending on n, p and A only such that

|| ef“.,p = cp[u]ol(e)"f“n.’ ’
for every 6 € 3(R") and f € W™?(E).
PROOF. We have

» DN x)-D®HY)” ,
1012, B, [ [T ey ey 101 1,

We clearly have
1671w = €1PO f N ot »
by Lemma 3.1
1H°D*D°A], < ¢t O f N »
for|a|+|B|=[m]and|a|<[m].
Finally if | & |=[m],

L L | @Y dxay - | 'x_L)lIH'(ﬂD"f)ﬂ'dxdy-p [ [ wreooniasy.

|lx-yls1

As in Lemma 3.1 we can bound the first integral by c;py(0)[| ]y, and

|60 | | D°fx)-D )" .,

I f |H(eDn||dxdysz'"I

Jx=yls1 | le1 fx - )’l‘"”
+2p/r'j‘ IID f(x)ﬂ |9(x{;90)rdxdy s
I [x-y["

and since | 6(x) - 6(y) |s p,(8) | x — y |, we have

(3.5)

(3.6)

(3.7

(3.8)
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[ [ 1#ED A ady <Co®] 11, (39)
|x=yls1
The lemma follows form (3.5), (3.6), (3.7), (3.8), (3.9) and Leibnitz’s formula.

LEMMA 3.3. Let | | Ecs(E) and {f,}, oy CL?(E). If {| £]},cw and {|Hf,] },  u are Cauchy
sequences in L?(R") and L?(R" x R") respectively, then for any truncating sequence {6,} .y we have
|H (1-8)f], —0.

PROOF. Letm >0and¢,=1-6,; nEN

R xR

1#'01), s[j [ 1w |H¢(x,y>rmy]

L

Let I, and I, denote the first and second brackets respectively.
Since {| H'f,| } is a Cauchy sequence in L?(R" x }t") and ¢, ~ 0 pointwise boundedly, we have that
I, — 0 as n goes to infinity. I7 can now be written as the sum of three integrals
= 1 VAN |H 0,(e,y) | dxdy ,
|xsM

lx-yls1

1 LLGN? | H 6,6, y) [ dudy
Ix-:kl
Js-j [ VLGN | H 0(x,y) | dxdy .

==y b1
Now as in the proof of Lemma 3.2 we can see that

Up
[ 10 e wy} .

» dz
('31 ||fi dx] EISI:P |D ¢n(§)r" . |zr+().-lb’
dz
f|7ax D%,(8) e
(Jml ! ]supl I’|, NES it

With similar arguments we see that

I, <2 f 156N | 9,0 P ax
.o

+2,,,I el I | 6.7 P LOOF .

|1 |z ro» fey b1 |x -y ¥

Since || f,]] is a Cauchy sequence in L?(:*), taking M large enough, all the terms involving | {” | £l Pdx

can be made arbitrarily small, all the other terms tend to zero by Lebesgue’s dominated converge theorem
and the fact that ¢, converges to zero uniformly in {x : | x |sM}.

THEOREM 3.4 W™?(E) has the truncating approximation property.
PROOF. Let {6;}, . y be a truncating sequence, | | € cs(E) and 4 C W™"(E) be precompact.
Assume that there exists a sequence {f,}_ . y C A such that
Ja-8,)0l,, =€, (3.10)
for some €>0 and some subsequence {6,} .y . Since A is precompact we can assume that
{ID°.]}. ex and {| H'D°f,] }, < x are Cauchy sequences in L?(R") and L*($" x R*) respectively, for
| @ |s[m]. Then
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by Lemma 3.3 we have
|H (1-8,)0°) =0 for |a|=[m].
If B < and | & |= [m] we also have | H"D*"%(1 - 8,,)D*f,]| , — 0 which contradicts 3.10.

It follows that || (1 -6,)f],, , — O uniformly on 4.

4. The Approximation Property of W™ (E)
Let {n;}, c u and {6;}, . y be regularizing and truncating sequences in (R"). For each i and j define

the operators in W™?(E)
M =n*f
and
[ej](f) = ejf .
By Theorems 2.5 and 3.4, we have that the identity I in W™?(E) is in the quasiclosure of {{n;}<[6;]:
i,j €N} in L (W™?(E)); note that the previous set is bounded in L (W™?(E)). In particular D(E) is dense
in W™?(E), where D(E) is the subspace of €(E) whose elements have compact support.

L. Schwartz in [10] uses a weaker definition of the approximation property, strict approximation
property, than Grothendieck’s definition since it is built on the bornology of all the absolutely convex
compact sets. In the next theorem, we shall use the following proposition proved in [10, p. 7].

PROPOSITION 4.1 Let E be a locally convex space, F is a linear subspace of E with a locally
convex topology finer than the topology inherited from E. If the identity I is an accumulation point (strict)
of L(E,F)in L (E) and if F has the (strict) approximation property then E also has the (strict) approximation
property.

THEOREM 4.2 1. IfE is a strict (LF)-space and has the approximation property then W™?(E) has
this property.

2. If E is a Banach space with the strict approximation property then W™?(E) has this property.

PROOF. 1. Let (1), c y 2nd (8;); c x be regularizing and truncating sequences in D(R") respectively.

Consider the following diagram:
T—n*6T

W™ % L(E) — D/(E) — DE),
F =le— [,
=L

where h is the canonical injection, and D(E) has the inductive limit topology. Note that all functions of
the diagram are continuous. This implies that

{{in:} °[8;]:j,k, EN} CL(W™"(E), E)),

and by Theorems 2.3 and 3.4 the identity I belongs to the quasiclosure of L(W™?(E), D(E)) in the space
L (W™F(E)). Now D(E) is topologically isomorphic to a numerable locally convex direct sum of copies
of s ®, E [1, Theorem 4] (where s denotes the space of all rapidly decreasing sequences). Hence D(e) has
the approximation property since s has it [5, (7), p. 284 and (2), p. 245].
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2. The proof is similar to part 1 taking in account that D{(e) has the strict approximation property
since it is topologically isomorphic to D(R") ®, E [9, prop. 9, p. 108] and D(R") has the strict approximation
property [10, prop. 1, p. 6]. Applying [10, case 2, p. 48] we complete the proof. ‘

Let E be a strict (LF)-space, p €[1,©) and (m;), . 4 a strictly increasing sequence in (0, )\ N. We

define W™(E) = N W™’(E) and endowed it with the topology generated by {|| |, ,:i € N,
i=l

|l Ecs(E)}.
COROLILARY 4.3 W‘"’"(E ) has the approximation property if E has it.

PROOF. If j i denote by I;; : W"*(E) — W™"(E) the canonical injection, here we use Lemma
3.1, then (W""’ (E).1; j) is a projective sequence. Furthermore, W™"(E) is topologically isomorphic
to the projective limit of this sequence. Since 2(E ) is dense in each W™°(E), lim( W™P(E), I, i) is areduced

projective limit and using Theorem 4.2 and [S, (7), p. 247] we have that W(")"(E ) has the approximation
property.
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