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ABSTRACT. This paper introduces a bulk queucing system with a single server processing
groups of customers of a variable size. If upon completion of service the queueing level is at least
r the server takes a batch of size r and processes it a random time arbitrarily distributed. If the
quecueing level is less than r the server idles until the queue accumulates r customers in total.
Then the server capacity is generated by a random number equals the batch size taken for ser-
vice which lasts an arbitrarily distributed time dependent on the batch size.

The objective of the paper is the stationary distribution of queueing process which is studied
via semi-regenerative techniques. An ergodicity criterion for the process is established and an

explicit formula for the generating function of the distribution is obtained.
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1. INTRODUCTION.

In many queueing systems with bulk service a server does not start service unless the num-
ber of waiting customers is at a certain fixed level. In this case the server is waiting for more ar-
riving customers until the desired level is reached. A typical situation arises in computer net-
work service, where every job to be done must go through a chain of computers (or parallel pro-
cessors). The job can not get started until all necessary computer components are free. So the
job (which now plays the role of a server) waits until the queue of waiting computers (in this
case customers) accumulates a necessary group to run the job. A version of such a queue was
modeled in Dshalalow and Russel [4]. A relevant modification of this model occurs when during
waiting time a task can be reset up or being on a preliminary service insofar requiring a dif-
ferent (generally smaller) number of computer components by the time a group of the initially
desired size becomes available. Such situations are common whenever a server, resting due to a
queue accumulating more customers, lends a part of its capacity which perhaps may not be

restored by the time the queue has reached the desired level. So by then the server begins to pro-
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cess a group of customers in accordance with the available capacity.

In the present paper the authors introduce and study a queueing model with an orderly Pois-
son input flow of customers and a single server of a variable capacity. The server usually takes a
group of fixed size r if such a group is available and processes it a random time with a given
general distribution. Otherwise, the server idles until the level of the queue reaches level r. By
then however capacity is a random number less than or equal to r and it takes the correspond-
ing batch for service which lasts a random time with a general distribution dependent on the
batch size. The authors target the queueing process {Q(t)} with continuous time parameter.
They establish a steady state condition and obtain the stationary distribution for the process by
using tools for semi-regenerative processes. An imbedded Markov chain is also given a detailed

treatment.

2. DESCRIPTION OF THE MODEL.

We consider a servicing system with an infinite waiting room and a single channel processing
a stream of customers described by an orderly stationary Poisson point process {7, ;k € N} with
intensity A. Denote N(-) the associated counting measure. Let Q(t) denote the total number of
customers in the system at time ¢ >0 and let t, =0, ¢, t;, ... be the sequence of the successive
completions of service of groups of customers. Defining @Q(t) as a right continuous process we
introduce the imbedded process Q,, = Q(t,.), n = 1, 2, ... . Let o, denote the service time of nth
group of customers. If ,, > r then the server takes a group of size r for service and immediately
begins processing this group completing the service by ¢, , ;. In this case 0, ,, =¢, 4, —¢, and
it is distributed according to a probability distribution function B (B(0) = 0) with a finite mean
b. If Q,, < r then the server waits r — @Q,, exponentially distributed phases, i.e. until r — Q,, more
customers arrive at the system reaching exactly level r and only then the server is ready to
begin service. But its capacity now becomes a random number 7v,,,;: @ — {1, 2, ..., r}
generated by the begin of n+ 1st service. We assume that vg, 75, v, ... are independent
identically distributed random variables with the common probability mass function (g;, g3, ...,
g,). Now given the server capacity v, a group of the same size will be processed during a
random time distributed according to By € {B,, B,, ..., B,}, where the latter is a tuple of
arbitrary probability distribution functions with finite means {b;, b,, ..., b,}. In this case
t, 41— t, is the sum of server waiting time and the actual service time o, ; ;.

With the above formalism, the terms of the sequence {Q,} therefore satisfy the following re-
cursive relation

Qn+l =

{Q" + (T—Q") -7n+l+ V'l+1 ’ Qn <r (21)’

Qn —T+V"+1, Q"ZT

where V,, = N(a,).

3. ANALYSIS OF THE IMBEDDED PROCESS.

From relation (2.1) and our assumption about the input stream it is obvious that {Q, ¥,
(P).e¢g . Qun=01,.} - E = {0, 1, ...} is a homogeneous Markov chain. Its transition
probability matrix A = (a,;; %,j € E) consists of two block matrices: The upper rectangular
block with all positive elements

a, =Y _ %% t=01.,r-1,j€E,
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where @, = f:e"\" (](_A_ur)%_’ B(du), j 2 r—k
a, =0 7 =0,..,r—k-1,
and the lower block matrix which is an upper triangular matrix (with all positive elements on
the main diagonal and above the main diagonal and zero elements below the main diagonal.)
Thus A is a A, -matrix, a special case of a class of A,, y-matrices studied by Abolnikov and
Dukhovny [2]. According to the Abolnikov/Dukhovny criterion, the equilibrium of the process
(Q,) is basically up to a ccrtain quality of the generating function of the rth row of matrix A.
Let A,(z) denote the gencrating function of the ith row of A.
PROPOSITION 1.
A2 := A(D=X[_ 7 *BA-Adg, i=0, .., r—1 (3-1)
A(2=2""8(A-Az) i>r (3.2)
where () and (,(8) are the Laplace-Stieltjes transforms of the corresponding probability distri-
bution functions B(z) and By(z), k=1, ..., r
PROOF: Equations (3.1) and (3.2) are due to the relation (2.1) and straightforward proba-
bility arguments. 1]
Let p = Ab. Then the following main result of this section holds true.
THEOREM 2. The imbedded Markov chain (Q,,) is irreducible and aperiodic. It is recurrent-
positive if and only if p < r. Under this condition, the generating function P(z) of the steady
state probability vector P = (pqg, py, --.) of (Q,) satisfies the following formula:

Tl plZA() - 2800 — A2)]
Mz = 70 = %)

(3.3)

where A(z) is defined in (3.1).

PROOF: The chain is obviously irreducible and aperiodic. Due to the Abolnikov/Dukhovny
criterion [2] applied to matrix A, the chain is recurrent-positive if and only if A/(1) = p < r and
Al(1) < 00,1 =0, ..., r— 1. The latter is true due to A)(1) = ¢ + Xg, where

¢ =r—Ely] (3.4
9=X._,bo (3.5)
Formula (3.3) follows from the relation P(z) = Ziee A(2)p; and proposition 1. 0

The determination of the unknown probabilities py, ..., p,., is subject to the following
THEOREM 3. The unknown probabilities is a unique solution py, ..., p,; of the following
system of linear equations:

T, p —,;[Az) z']_/ 0,k=0,.,k-1,8=1,.,85, (3.6)
Tisopide +r—z+«\? —pt=r-p, (3.7

where z, are the roots of the function z"— #(A — )z) that belong to the closed unit ball B(0,1)
in C with their multiplicity k, such that ¥ f= ko=r-1
The proof of theorem 3 is similar to one in Abolnikov et al. [1]. 0

DEFINITIONS AND NOTATIONS. r—s .
() Let B=(Bz; = € E)T, where Bz = ETt)] = { Xb g

(#) Let C denote the (stationary) capacity of the system, defined C = APf (equals the ratio of
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the mean "service cycle” PS and the mean interarrival time 1/)). Observe that the notion of
the capacity of a system gocs back to the classical model M/G/1, where C is reduced to C = \b
=p.
(711) Let ¢ denote the (stationary) capacity of the server. Then obviously
c =1L pi +EMZ]L o (3.8)

One remarkable property of the system in the equilibrium is that the capacities of the server
and the system coincide.

PROPOSITION 4. Given the equilibrium condition p < r, the capacity of the system C and
the capacity of the server c are equal.

PROOF: The equation C = ¢ follows from theorem 3, equation (3.7) after some algebra.

Observe that equation (3.8) for ¢ can be rewritten in the form C=c=r — eT7! p,. u]

EXAMPLE 5.

For r=2 and B as exponential probability distribution function with parameter 1/b, there is
obviously only one root of the denominator

that belongs to the open unit ball B(0,1) and it equals z; = 1zyl+dp 121p+4/) .

Equations (3.6) and (3.7) in theorem 3.3 are reduced to the simple system
{ pole+2 + X7 —b)) +r(e+1+M7 —b)=2-p

Po(AA(z) — m

(3.9)
) +pi(FA(n) - hm)

having a unique solution py and p,.

4. QUEUEING PROCESS WITH CONTINUOUS TIME PARAMETER.

We first introduce a few notions.

DEFINITION 6. Let T be a stopping time for a stochastic process {Q,F,(P*),.g, Z(t);
t >0} — (E, B(E)). (Z(t)) is said to have the locally strong Markov property at T if for each
bounded random variable (: 2 — E" and for each Baire function f: E"—R, r=1,2,..., the
following holds true

E*[fo( 087|%Fs] = E’T[fo(¢] P*-a.s. on {T < oo},
where 0, is the shift operator.

DEFINITION 7. A stochastic process {Q,F, (P*),g, Z(t); t > 0} — (E, B(F)) with E XN
is called semi-regenerative if

a) there is a point process {t,} on R such that ¢,—oo0 (n—00) and that each t,, is a stop-
ping time relative to the canonic filtering o(Z,;y < t),

b) the process (Z(t)) has the locally strong Markov property at ¢,, n =1,2,...,

¢) {Z(t,+0),t,; n=0,1,...} is a Markov renewal process.

It is obvious that the process {Q(t)} has the locally strong Markov property at the stopping
time t,, n = 1, 2, ..., and thus {Q(t)} is a semi-regenerative process with respect to the sequence
{t.} (see definitions 6 and 7.)

DEFINITION 8. Let (X,,t,) be an irreducible aperiodic Markov renewal process with a
discrete state space E. Denote 8, = E*[t,] the mean sojourn time of the Markov renewal process
in state {r} and let 8 = (B, ;z € E)T. Suppose that the imbedded Markov chain (X,) is ergodic
and that P is its stationary distribution. We call PS the mean inter-renewal time. We call the
Markov renewal process recurrent-positive if its mean inter-renewal time is finite. An irreducible
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aperiodic and recurrent-positive Markov renewal process is called ergodic.

DEFINITION 9. Let {Q,%,(P*),.g, Z(t); t >0} — (E, B(E)) be a semi-regenerative pro-

cess relative to the scquence {t,} of stopping times. Introduce the probability
Ku(t)=P{Z(t)=k,t, > t}, jk€E.

We will call the functional matrix K(t) = (K ;i(t); j,keE) the semi-regenerative kernel.

Before stating the main result of this section, we will recall the main convergence theorem and

its corallary.

THEOREM 10. (The Main Convergence Theorem, cf. Cinlar [3], p. 347). Let {Q,9,(P*), g,
Z(t); t >0} — (E, B(F)) be a semi-regenerative stochastic process relative to the sequence {¢,}
of stopping time and lct K(t) be the corresponding semi-regenerative kernel. Suppose that the
associated Markov renewal process is ergodic and that the semi-regenerative kernel is Riemann
integrable over R, . Then the stationary distribution = = (r,; z € E) of the process (Z(t)) exists
and it is determined from the formula:

T = ﬁi TP fo Kult)dt, ke E. (4.1)

COROLLARY 11. Denote H = (hy; jk€E)= [ :° K(t)dt the integrated semi-regenerative
kernel, h(z) the generating function of jth row of matrix H and (z) the generating function of
vector 7. Then the following formula holds ttue

79 = B T pen 2, ho2) (42)
PROOF. From (4.1) we get an equivalent formula in matrix form x—%{ Finally,
formula (4.2) is the result of elementary algebraic transformations. 0
The following is the main result of this section.
THEOREM 12.
(%) The limiting distribution = = (my, 7, ...) of the process {Q(t)} exists if and only if p <r.

(#i) The generating function x(z) of x satisfies the following formula:

*(5) = Tiyomt= X =EZPk) - L7z m, (43)
r- _ 1 — 7
where a(z)={ Ea;ogﬁo(’:) Az) =% T 212
) r=

PROOF: The validity of assertion (i) is subject to a routine proof.
(1) Let K(t)=(K,(t); j,k€E) denote the semi-regenerative kernel (definitions 8 and 9),
where Ki(t) = P{Q(t) =k, t; > t}. By elementary probability arguments we deduce that

BYRICU .

Ky(t) = c,\t(k(—)j)” 0<j<k<r (4.4)
Klt) = [T e ‘*_“),.),z,-,u - B(lady )
M) 0<j<r-Lk2>r
K = MO - Byl << («9)
I()k(t)=0) 0 < k< ]1] >0 (4‘7)

Clearly, K(t) is Riemann integrable over R, and denote
H=[7 K({)dt (4.8)

Apply the main convergence theorem for semi-regenerative processes in the form of

r= %g (4.9)

(see theorem 10). Here PJ can be expressed through the capacity of the system C = APB which
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isC=r — 62‘?'__‘_ P, due to proposition 4.
(4.9) can be expressed in terms of the generating functions, as
n(z) = %, T, es b(2p), (4.10)
where hj(z) is the gencrating function of the jth row of the matrix H (theorem 11.) Now
formula (4.3) follows from (4.10) and from the expressions for h;(z):
h(M1-2)=2 -2 T7_ g8,(A-A), j=0,..,r-1 (4.11)
k(M1 — 2) = 2(1 — B(A — A2)), ]2 (4.12)
EXAMPLES 13.
DForr=2,  x(z) =% (1+2) P2 - £2 08229 (o +m),
where C = 2— ¢,(po + p,)- If in addition B is an exponential distribution then p, and p, satisfy
system (3.9) in example 5.
2) The expected length of an idle period of the server in the equilibrium satisfies the below
formula (due to straightforward probability arguments):

R
2:-:101"~ .

The probability that the server is idle in the stationary mode is

L

I+B’

where B denotes the mean busy period which %Bos can be expressed in terms of known values:
— 0 g _
B =231

i=0¢
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