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ABSTRACT: It is shown that a compact almost complex surface in 5’6 is either totally geodesic or

the minimum of its Gaussian curvature is less than or equal to 1/3.
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1. INTRODUCTION.
The six dimensional sphere ,5,6 has almost complex structure J which is nearly Kaehler, that is,

it satisfies (XJ)(X)= 0, where is the Riemannian connection on ,5’6 corresponding to the usual

metric g on 5’6. Sekigawa [1] has studied almost complex surfaces in S6 and has shown that if they

have constant curvature K, then either K 0, 116 or 1. Under the assumption that the almost

complex surface M in 5’6 is compact, he has shown that if K > 1/6, then K 1 and if 116 < K < 1,

then K 1/6. Dillen et al [2-3] have improved this result by showing if 1/6 < K < 1, then either

K 1/6 or K 1 and if 0 _< K _< 116, then either K 0 or K 1/6. However, using system of

differential equations (1) (cf. [5], p. 67) one can construct examples of almost complex surfaces in
,5’6 whose Gaussian curvature takes values outside [9,1/6] or [1/6,1]. The object of the present

paper is to prove the following:
THEOREM 1. Let M be a compact almost complex surface in St} and K0 be the minimum of

the Gaussian curvature of M. Then either M is totally geodesic or K0 < 1/3.
2. MAIN RESULTS. Let M be a 2-dimensional complex submanifold of 5,6 and g be the induced

metric on M. The Riemannian connection of 5,6 induces the Riemannian connection X7 on M
and the

connection 7-L in the normal bundle u. We have the Gauss and Weingarten formulae

TxY X7xY + h(X, Y), "Xy -ANX + 7x N, X, Y
_
(M), N 6. u, (2.1)

where h, AN the oa f=a,=ta fom satisfying 9(h(X, Y),N)= 9(ANX, Y) and (M)is
the Lie-algebra of vector fields on M. The curvature tensors , R and R-l- of the connections ,
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X7 and V-I- respectively satisfy

R(X, Y;Z, W) it(X, Y;Z, W)+ (h(Y, Z), (X, W))- ((x, z), h(Y, W))

(X, Y;N1,N2) R .L (X, Y:N1,N2)- 9([AIvl,AN](X),Y
[(X, Y)Z] +/- =(xh) (Y, Z)-( CYyh) (X, Z), X, Y, Z, We5(M), N1,N2er,,

where [(X, Y)Z] +/- is the normal component of (X, Y)Z, and

x)(r, z) v (r, z)- (Y, VxZ).

The curvature tensor of S6 is given by

R(X, Y;Z, W) g(Y, Z)g(X, W)- g(X,Z)g(Y, W). (2.5)

LEMMA 1. Let M be a 2-dimensional complex submanifold of S6. Then (XJ)(Y)= O,
X, Ye(M).

PROOF. Take a unit vector field Xe(M). Then {X, JX} is orthonormal frame on M.
Since S is nearly Kaehler manifold we have (XJ)(X)= O, and (XJ)(JX)= 0. Also

VXJ)(JX J( VxJ)(X 0 and (XJ)(X) -( VxJ)(JX O.

Now for any Y, Ze(M), we have Y aX +bJX and Z cX +dJX, where a, b, c and d are

smooth functions. We have

(X7yJ)(Z) a( VXJ)(Z + b (]XJ)(Z) a( VZJ)(X b( VZJ)(JX
-ac( 7XJ)(X -ad( ]XJ)(X)- bc( XJ)(JX)- bd(]XJ)(JX) O.

LEMMA 2. For a 2-dimensional complex submanifold M of 5’6, the following hold

(i) h(X, JY) h(JX, Y) Jh(X, Y), VxJY J VXY,

(ii) JANX AjNX ANJX JANX
(iii) ]xh)(Y, Z) Vxh)(JY Z) Vxh)(Y JZ),

(iv) R(X, Y)JZ JR(X, Y)Z, X, Y, Ze(M),Yet,.

PROOF. (i) follows directly from Lemma and equation (2.1). The second part of (ii) follows
from (i). For first part of (ii), observe that for Net, and Xe(M),
g((VXJ)(N), Y)= -g(N, (xJ) (Y))= 0 for each Yet.E(M), that is, (VxJ)(g)is normal to M.
Hence expanding ( XJ)(N) using (2.1) and equating the tangential parts we get the first part of

(ii).
From equations (2.4) and (2.5), we get

X7xh)(Y, Z)= Vyh)(X, Z) Vzh)(X, Y), X, Y, ZecI,(M). (2.6)

Also from (i) we have

Vxh)(JY Z) Vxh)(Y, JZ), X, YeT:,(M). (2.7)

Thus from (2.6) and (2.7), we get that

Vxh)(JY Z) Vxh)(Y JZ) X7yh)(X, JZ) Vyh)(JX, Z) ]xh)(Y, Z),

this together with (2.7) proves (iii). The proof of (iv) follows from second part of (i)..

(2.2)

(2.3)

(2.)
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The second covariant derivative of the second fundamental form is defined as

2h) (X, Y, Z, W) V-l- x( h) (r, z, w)- h) TxY, Z, W)

-( v h) (r, VxZ, w)- v h) (r, z, VxW),

where V h) (X, Y, Z) 7xh (Y, Z), X, Y, Z, W%(M).
Let II’UM- M and UMp be the unit tangent bundle of M and its fiber over pcM

respectively. Define the function f: UM R by f(U) h(U, U)I[ 2.
For UcUMp, let au(t be the geodesic in M given by the initial conditions aU(0)= p,

&U(0) U. By parallel translating a VUMp along aU(t), we obtain a vector field Vu(t). We have

the following Lemma (cf. [5]).
LEMMA 3. For the function fu(t)= f(Vu(t)) we have

(i) tt fu(t) 2g(( h)(irU, VU, VU), h(Vu, Vu))(t),
d2 2)(ii) - fu(O) 2g(( V (U, U, V, V),h(V, V))+ 9. 1[( h) (U, V, V)[[ 2

3. PROOF OF THE THEOREM 1. Since UM is compact, the function f attains maximum

at some VcUM. From (i) of Lemma 2, [[h(V, V)[[2 [[h(jV, JV) I[2 and thus we have

fv(O) < 0 and fjv(O) <_ O. Using (iii) of Lemma 2 in (2.8) we get that

2h)(JV, JV, V, V)= 2h)(JV, V, JV, V).

The above equation together with the Ricci identity gives

2h)(JV, JV, V, V)- 2h)(JV, V, JV, V).

2h)(YV, V, JV, V)- 2h)(V, JV, JV, V)

R +/- (JV, V)h(JV, V) -h(R(JV, V)JV, V) -h(JV, R(JV, V)V).

Taking inner product with h(V, V) and using (iv) of Lemma 2, we get

g(( 2h) (JV, JV, V, V)-( 2h) (V, JV, JV, V),h(V, V)) (3.1)

R _1_ (JY, Y;h(JY, Y),h(Y, V))- 2g(h(R(JY, Y)JY, Y),h(Y, Y)).

Now using (i) of Lemma 2, we find that g(h(U, V),h(U, JV)) O, that is, g(Ah(v, Vu),JV 0 for

all UUMp. Since dimM 2, it follows that Ah(u, Uu)= AU. To find A, we take inner inner

product with U and obtain X h(U, U)[[ 2. Thus, AhU(u u) h(U, U)[[ 2U. From equations

(2.2) and (2.5) we obtain

R(X, Y)Z g(Y, Z)X- g(X, Z)Y A- Ah(y, z)X Ah(X, z)Y,
which gives

R(JV, V)JV V + Ah(v,JVjv Ah(.Iv, Y.lv) Y + 2Ah(v, Yv) V + 2 h(V, V)[[ 2V.

Also from (2.3) and (2.5) we get

R _1_ (JV, V, h(JV, V),h(V, V))= g([Ah(YV, v),Ah(v, V)](JV), V)

2g(Ah(v, v)V, Ah(v, vV))
2 h(V, V)II 4.

(3.2)
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Substituting (3.2) and (3.3)in (3.1) we get

g(( 2h) (JV, JV, V, V) -( 2it) (V, JV, Jr, V), It (V, V)) 2f(V) (1 3f(V)).

From (iii) of Lemma 2, it follows that

It) (JV, JV, V) It) (J2V, V, V) -( h) (V, V, V),

this together with X7 xJY J xY of (i) in Lemma 2, gives

7 2h)(V, JV, YV, V) -( 2h) (V, V, V, V).

Using this and (ii) of Lemma 3 in (3.4), we obtain

d2 d2- fv(O) +- fjv(O) 2f(V)(1 3f(V)) + 2 I1( v h)(V, V, V)II 2 + 2 I1( h)(YV, V, V)II 2 < 0

Thus either f(V) 0, that is, M is totally geodesic or 1/3 y(V). Since an orthonormal frame of

M is of the form (U, JU), the Gaussian curvature K of M is given by

g 1 + g(h(U, U),h(JU, JU)) g(h(U, JU),h(U, JU)) 2 h(U, U)II 2.

Thus K:UM .--,, R, is a smooth function, and UM being compact, K attains its minimum
g

0 minK and we have g0 1- 2max h(U, U)I] 2, from which for the case 1/3 _< f(Y), we get
K,0 < 1/3. This completes the proof of the Theorem.

As a direct consequence of our Theorem we have

COROLLARY. Let M be a compact almost complex surface in 5"6. If the Gaussian curvature

K of M satisfies K > 1/3, then M is totally geodesic.

(3.4)
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