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ABSTRACT: It is shown that a compact almost complex surface in § is either totally geodesic or

the minimum of its Gaussian curvature is less than or equal to 1/3.
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1. INTRODUCTION.

The six dimensional sphere $% has almost complex structure J which is nearly Kaehler, that is,
it satisfies (W J)(X) = 0, where V is the Riemannian connection on S8 corresponding to the usual
metric g on S5, Sekigawa [1] has studied almost complex surfaces in 5% and has shown that if they
have constant curvature K, then either K =0, 1/6 or 1. Under the assumption that the almost
complex surface M in S is compact, he has shown that if K > 1/6, then K =1 and if 1/6 < K < 1,
then K =1/6. Dillen et al [2-3] have improved this result by showing if 1/6 < K <1, then either
K=1/6 or K=1 and if 0 < K <1/6, then either K =0 or K =1/6. However, using system of
differential equations (1) (cf. [5], p. 67) one can construct examples of almost complex surfaces in
5% whose Gaussian curvature takes values outside [9,1/6] or [1/6,1). The object of the present
paper is to prove the following: ’

THEOREM 1. Let M be a compact almost complex surface in $% and K, o be the minimum of
the Gaussian curvature of M. Then either M is totally geodesic or Ky <1/3.

2. MAIN RESULTS. Let M be a 2-dimensional complex submanifold of S and g be the induced

metric on M. The Riemannian connection ¥ of S® induces the Riemannian connection V on M

and the
connection V1 in the normal bundle ». We have the Gauss and Weingarten formulae
WY = WY +h(X,Y), WN=-AyX+ V%N, X, YeBM), Nev, (2.1)

where h, Ay are the second fundamental forms satisfying g(h(X,Y),N) = g(AyX,Y) and B(M) is
the Lie-algebra of vector fields on M. The curvature tensors R, R and RL of the connections v,
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V and WA respectively satisfy

R(X,Y;2,W) = R(X,Y;Z, W) + g(h(Y, 2),h(X, W) - g(h(X, Z),h(Y, W)) (22)
R(X,Y;N,,Ng) = R (X, Y: N}, Ng) - g(( A , Ay J(X),Y) (23)
[R(X,V)2) L+ =( Vh) (Y, 2) - (S%h) (X, Z), X,Y,Z,WeB(M), N, Nyev, (24)

where [R(X,Y)Z] 1 is the normal component of R(X, Y)Z, and
(%h)(Y,2)= Y h(Y, Z) =~ h(Y, &2).
The curvature tensor R of $% is given by
R(X,Y;Z,W)=g(Y,2)g9(X, W)~ g(X,2Z)g(Y,W). (25)

LEMMA 1. Let M be a 2-dimensional complex submanifold of S6. Then (V,J)(Y)=0,
X, Ye%B(M).

PROOF. Take a unit vector field Xe%(M). Then {X, JX} is orthonormal frame on M.
Since S8 is nearly Kaehler manifold we have ( ﬁX‘] )(X) =0, and ( ?XJ )(JX)=0. Also

(Y YIX) = = I(VJ)(X) =0 and (Y J)X) = — (V) X) =0.
Now for any Y, Ze%(M), we have Y =aX +bJX and Z =cX +dJX, where a,b,c and d are

smooth functions. We have
(% I)(2) = o( Y I)Z) +b (YxI)2) = — a( Vg I)(X) - b( Vp T )T X)
= —ac( Ve J)(X) — ad( G xJ)(X) = be( Vg J)(IX) — bd( Y x ) X) =0.

LEMMA 2. For a 2-dimensional complex submanifold M of 5, the following hold
(1) hX,JY)=h(JX,Y)=JK(X,Y), WJY =JW%Y,

()  JANX = AjnX, AyJX = —JARX,
@) (Fxh)¥, 2) = (Geh)IY, 2) = (Gh)Y, I2),
(v) R(X,Y)JZ=JRX,Y)Z, X,Y,Ze%(M),Nev.

PROOF. (i) follows directly from Lemma 1 and equation (2.1). The second part of (ii) follows
from (i) For first part of (ii), observe that for Nev and Xe%B(M),
9(( ﬁXJ)(N), Y)= —g(N,(@xJ) (Y)) =0 for each Ye%B(M), that is, ( VxJ)(IN) is normal to M.
Hence expanding (¥ yJ)(N) using (2.1) and equating the tangential parts we get the first part of

(ii).

From equations (2.4) and (2.5), we get
()Y, 2) = (Nh)(X, Z) = (Vzh)(X,Y), X,Y,Ze%(M). (26)
Also from (i) we have
(Ygh)(JY, Z) = (Vh)(Y, JZ), X,YeH(M). (2.7)
Thus from (2.6) and (2.7), we get that
(Vh)(JY, 2) = (Veh)(Y, T Z) = (N h)(X, JZ) = (G RN X, Z) = (Y xh)(Y, 2),
this together with (2.7) proves (iii). The proof of (iv) follows from second part of (i)..
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The second covariant derivative of the second fundamental form is defined as
(V2h) (X,Y,2,W) = VL x(Vh) (Y, 2, W)~ (Vh) (%Y, Z,W)
—(VR) (Y, %Z,W)- (V) (Y, Z, W),

where (V k) (X,Y, Z) = ( ?Yh) Y,2), X,Y,Z,WeH(M).

Let II:UM — M and UMp be the unit tangent bundle of M and its fiber over peM
respectively. Define the function f:UM — R by f(U) = || (U, U)| 2

For UeUMp, let oy(t) be the geodesic in M given by the initial conditions oy(0) = p,
6y(0) =U. By parallel translating a VeUMp along oy(t), we obtain a vector field Vi (t). We have
the following Lemma (cf. [5]).

LEMMA 3. For the function fy(t) = f(V(t)), we have
@) £ fy() =297 h)ay, Vi, Vil bV, V))e),
oy d2 = =
(i) 5 fy(0)=26((V?) (U, U, V, V)RV, V) +2]| (T ) (U, V, V)]

3. PROOF OF THE THEOREM 1. Since UM is compact, the function f attains maximum
at some VeUM. TFrom (i) of Lemma 2, |[&(V,V)] 2= |hJV,JV)]||? and thus we have
;—tffV(O) <0 and ;7 fyv(0) £0. Using (iii) of Lemma 2 in (2.8) we get that

(V2R)JIV,JV,V,V)=(V 2)JV,V, IV, V).
The above equation together with the Ricci identity gives
(V2R)JV, IV, V, V)= (T 2R)JV,V,JV, V).

=(V2R)JIV,V, IV, V)= (T 2R)V,JV,JV,V)

=RL UV, V)LV, V) —h(RJV,V)JIV,V) —=h(JV,R(JV,V)V).
Taking inner product with A(V, V') and using (iv) of Lemma 2, we get

9(V2h) (JV, IV, V, V)= (T 2h) (V, IV, JV,V),k(V,V)) (3.1)
=RL UV, V;h(JIV,V),h(V,V))=2g(R(R(JIV, V)JIV,V),h(V,V)).

Now using (i) of Lemma 2, we find that g(h(U,U),h(U, JU)) =0, that is, 9(Ah(U,UU)"IU) =0 for
all UeUM . Since dimM =2, it follows that Ah(U,U v)= AU. To find A, we take inner inner
product with U and obtain A = || (U, U)||2. Thus, AU, vy = | A(U,U)||2U. From equations
(2.2) and (2.5) we obtain

R(X,Y)Z = g(Y,2)X ~ (X, 2)Y + Ay, )X — Ay x, 7)Y,
which gives
RV, V)V = =V + Ay IV s = Aygy Vv = =V +24yy V= =V +2[ RV, V) || V.
(32)
Also from (2.3) and (2.5) we get
RL(JV,V, hIV,V),h(V,V)) = I Angy, vy Any, vIIV), V)

= =~ 2(Apy, v)V Ay, vV
= —2| AV, V)| %
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Substituting (3.2) and (3.3) in (3.1) we get
(V%) (JV, IV, V, V)= (D 2h) (V,IV,JV,V),h(V,V)) = 2f(V) (1=-3f(V)).  (34)
From (iii) of Lemma 2, it follows that
(VR IV, IV, V)=(Th) (J2V,V,V)= —(Th) (V,V,V),
this together with V yJY =J V xY of (i) in Lemma 2, gives
(V2h)(V,JV,JV, V)= —(V2h) (V,V,V,V).
Using this and (i) of Lemma 3 in (3.4), we obtain
fg fv(0)+ J% Fv(0) =2f(VY1=3f(V)+2 (| (VRYV, V, V) |2 +2||(V R)JV,V,V)[2<0

Thus either f(V) =0, that is, M is totally geodesic or 1/3 < f(V). Since an orthonormal frame of
M is of the form (U, JU), the Gaussian curvature K of M is given by

K =1+ ¢(h(U,U),h(JU, JU)) - g(h(U, JU),h(U, JU)) = 1 - 2|| (U, V) || %

Thus K:UM — R, is a smooth function, and UM being compact, K attains its minimum
Ky =minK and we have Ky =1—-2max || h(U,U)|| 2, from which for the case 1/3 < f(V), we get
Ky <1/3. This completes the proof of the Theorem.

As a direct consequence of our Theorem we have

CORQLLARY. Let M be a compact almost complex surface in S5. If the Gaussian curvature
K of M satisfies K > 1/3, then M is totally geodesic.
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