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ABSTRACT. It is shown that two distinct, bounded, open subsets of R may possess Lhe

same Voronoi set.
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1. INTRODUCTION

Let {Di}OSiSn

connected subsets of R” which satisfy Di c DO’ Di + DO, 1 <1i<n and Di n Dj =@,

be a finite collection of non-empty, bounded, open and simply

n
1 <i<j<n. Then if we define Q = D0 \ v
i=

i+ @ is a non-empty, bounded, open
1

5 ol

and connected subset of‘lR2 with boundary 3Q =

I c

) aDi. (Loosely speaking, Q is a
1=0
domain DO containing "obstacles" Di’ 1 <i < n.) The the following definition of
the Voronoi diagram Vor(Q) of Q is taken from [1].
For any (x,y) € 9, define Near(x,y) as the set of points in 3Q closest to (X,y).
("Closest to" is, of course, defined in terms of ordinary Euclidean distance in the
plane.) Since 3Q is closed, Near(x,y) is always non-empty.

The Voronod diagram Vor(Q) of Q is then defined to be the set of points
{(x,y) € 2 : Near(x,y) contains more than one point}.

Vor(Q) is used in [1] in connection with motion planning problems.

Clearly given the sets {Di}’ Vor(Q) is unique. However, here we take the
opposite point of view and consider the construction of the sets {Di} from a given
Voronoi diagram.

A preliminary question that one might ask is: could it be possible for two
collections {Di} and {Di} to have the same Voronoi diagrams? It is easy to see that

the answer is yes: for 0 < ¢ < 1 let

D {(x,y) | x2+y2 < (1+e)2} and

—_m O m

D {x,7) | x2+y2 < (1-2)2}.
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Then if QFf = DO\Bl, Vor(ne) is the unit circle, centre the origin, whatever the
value of € might be.

A more subtle question is the following: Suppose D0 = Dé, then is it possible
for two different collections (Di} and {Di} to have the same Voronoi diagram?
Informally, what we are asking is whether, given a fixed domain DO’ it is possible
to arrange two different sets of obstacles within D., both of which produce the

same Voronoi diagram.) We show the answer is again in the affirmative.

2. THE EXAMPLE
Let

=
[}

(G x| <4, |y| < 4}

=]
|

1= (e lx] <3, 1 <y <3}

o
[

, = L |x] <3, -3 <y < -1},
Then @ and Vor(§) (where Q = DO\B1 u Bé) are depicted in Figure 1. Note in particular
that Vor(§) contains the line segment {(x,0)]||x| s 1}.
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Figure 1 - Vor(Q) is denoted by the dashed line
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We wodify D1 and 02 as follows.

2 2 - -
Let C = {(x,y) | x“+y° < 2} and put Di = Dl\C’ Dé = DZ\C' Then if Q' = D \D! u D/

Vor(Q) = Vor(Q'), (see Figure 2).

N\ /
/ (-1,0) (0,0) (1,0) \

Figure 2 - Vor(Q') is denoted by the ashed line

To see that the Voronoi diagrams of 2 and Q' are indeed the same first note
that it suffices to consider those points (x,y) in @' for which |x| < 1 and
|y| < /2 since for any other (x,y) € 2', Near(x,y) will be unchanged by the
modifications made to D, and D,. To begin with, consider those points within the
triangle whose vertices are (-1,0), (0,0) and (-1,1). It is clear that if (x,y)
is such a point then Near(x,y) = {(-1,1)} and so (x,y) ¢ @'. The same conclusion is
true for the points in Q' which lie on the straight lines joining (-1,1) to (-1,0)
and (-1,1) to (0,0), (excluding the endpoints of those lines). Next consider the
points (x,0) where -1 < x < 0. For such a point Near(x,0) = {(-1,1), (-1,-1)} and
so (x,0) € Vor(2'). It is also clear that (0,0) € Vor(Q'). Now consider those
points within the sector of C which has vertices (0,0), (-1,1) and (0,v2). 1f
(x,y) is such a point then it is easy to see that Near(x,y) consists of the single
point obtained by projecting the straight line joining (0,0) to (x,y) until it
intersects Di. The same conclusion is true for the points on the straight line

between (0,0) and (0,/2) (excluding the endpoints of course). The results for
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the remaining points in Q' follow immediately from the symmetry of Q'. Hence
Vor(Q) = Vor(Q').

A possible weakness of this example is that the sets Di and Dé are not convex.
The answer to the same question as that posed in §1 but with the additional

hypothesis that all the sets in {Di} and {Di} be convex would appear to be unknown.
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