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2
ABSTRACT. It is shown that two distinct, bounded, open subsets of may possess the

same Voro1oi set.
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1. INTRODUCTION

Let {Di}o<i_<n be a finite collection of non-empty, bounded, open and simply

connected subsets of IR
2
which satisfy D

i DO, D
i # D

O
I i n and D. n D. ,

].

n
I < i < -<- n. Then if we define D

O
\ u Di, is a non-empty, bounded, open

i=l
n

and connected subset of IR2 with boundary u D.. (Loosely speaking, is a
i=O

domain D
O containing "obstacles" Di, i E i n.) The the following definition of

the Voronoi diagram Vor() of is taken from [I].

For any (x,y) , define Near(x,y) as the set of points in closest to (x,y).

("Closest to" is, of course, defi,ed in terms of ordinary Euclidean distance in the

plane.) Since is closed, Near(x,y) is always non-empty.

The Vul%d Vor() of is then defined to be the set of points

{(x,y) Near(x,y) contains more than one point}.

Vor() is used in [I] in connection with motion planning problems.

Clearly given the sets {Di} Vor() is unique. However, here we take the

opposite point of view and consider the construction of the sets {D.} from a given
I

Voronoi diagram.

A preliminary question that one might ask is: could it be possible for two

collections {D.} and {D} to have the same Voronoi diagrams? It is easy to see that
I

the answer is yes: for O < e I let

DOe {(x,y) x+y < (l+e) 2} and

2 2 2DI ((x,y) x +y (i-) }.
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Then if e DO\I, Vor(e) is the unit circle, centre the origin, whatever the

value of E night be.

A more subtle question is the following: Suppose D
O D, then is it possible

for two different collections {D.} and {D} to have the same Voronoi diagram?
i i

Informally, what we are asking is whether, given a fixed domain DO, it is possible

to arrange two different sets of obstacles within DO, both of which produce tile

same Voronoi diagram.) We show the answer is again in the affirmative.

2. THE EXAMPLE

Let

D
O {(x,y)[[x[ < 4, [y[ < 4}

DI {(x,y)[ Ix < 3, I < y < 3}

D
2 {(x,y)[ [x < 3, -3 < y < -I}.

Then and Vor(.) (where Do\DI u D2) are depicted in Figure i. Note in particular

that Vor([) contains the line segment {(x,O)[ Ix < I}.-- /
(4,4)
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Figure I Vor() is denoted by the dashed line
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We odify D
1

and D^ as follows.
2 2

DI\C D2\C Then if ’ DO\ u D--Let C {(x,y) x +y 2} and put DI D
2

Vor() Vor(’), (see Figure 2).

/ (-1,6) (o,o) (1,o)
/

/ \

D

Figure 2 Vor(’) is denoted by the ashed line

To see that the Voronoi diagrams of and ’ are indeed the same first note

that it suffices to consider those points (x,y) in ’ for which Ixl -< I and

IYl < /2 since for any other (x,y) E ’, Near(x,y) will be unchanged by the

modifications made to DI
and D2. To begin with, consider those points the

triangle whose vertices are (-i,0), (O,O) and (-i,i). It is clear that if (x,y)

is such a point then Near(x,y) {(-i,I)} and so (x,y) 4 ’. The same conclusion is

true for the points in ’ which lie on the straight lines joining (-I,I) to (-i,0)

and (-i,I) to (O,O), (excluding the endpoints of those lines). Next consider the

points (x,O) where -i < x < O. For such a point Near(x,O) {(-i,i), (-I,-I)} and

so (x,O) E Vor(’). It is also clear that (O,O) Vor(’). Now consider those

points within the sector of C which has vertices (0,0), (-i,I) and (0,/2). If

(x,y) is such a point then it is easy to see that Near(x,y) consists of the single

point obtained by projecting the straight line joining (O,0) to (x,y) until it

The same conclusion is true for the points on the straight lineintersects DI.
between (0,O) and (0,/2) (excluding the endpoints of course). The results for
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the remaining points in R’ follow immediately from the symmetry of R’. Hence

Vor() Vor(’).

and D are not convex.A possible weakness of this example is that the sets D
1

The answer to the same question as that posed in I but with the additional

hypothesis that all the sets in {D.} and {D] be convex would appear to be unknown.
1
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