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ABSTRACT. This paper is to develop theorems concerning the REGULARITY of the method
" F " which is more general than Cesaro's, Able's and Riemann's methods in the

theory of summability.
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1. INTRODUCTION.

There are many well-knownmethods in the theory of summability which has many
uses throughout analysis and applied mathematics, for example, Cesaro's, Able's,
Riemann's, etc.. Mathematicians have contributed much to the study of these
methods which all can be found in books that provide an introduction to Summability
Theory. The "F" method is one of methods of Summability, and more general than
those mentioned above. But there is less information about Regularity available
covering the research in this method. This note concerns the regularity of the "F"
method. Five theorems will be given.

2. MAIN RESULTS.
DEFINITION 2.1. Suppose that {Fﬂ(x)}::.1 is a sequence of functions defined in

an interval 0 < x = b and that for each n

lim Fn(x) =1,
x*0

and suppose that
F(x) = ) a F_(x)
is convergent in some interval 0 < x £ ¢c < b and

lim F(x) = S.
x>0
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Then we say that Zan is summable (F) to S.
It is not hard to see that if Zan is Cesaro or Abel or Riemann summable, then
Zan is summable (F) for suitable functions Fn(x), respectively.
There is a well-known theorem about the regularity of the "F" method. [1,2]:
THEOREM. (REGULARITY) In order that the "F" method should be regular, it is

necessary and sufficient that
LDIF ) - F 0] <H, 2.1

where H is independent of x, in some interval 0 < x £ ¢ < b.

It is clear that method "F" is regular if {Fn(x)} is monotone and uniformly
bounded in some interval 0 < x £ ¢ < b. Next first theorem will prove that the "F"
method should be regular for some sequence of functions {Fn(x)} without monotonicity.

THEOREM 2.1. The condition (2.1) is satisfied if there are two positive

-] -]
sequences {m } __ and {M } such that
n n= n n=0

0

0<m <m for all n
n n

+1 °
and
-]

0<M ., Z M <

and for each n
n
IFn(x) - 1| < Mnx N 0<xsSc<b.
PROOF. Since

IF 0 - F, ]

SR e -1+ [E, & -1

n+l
m m
< n n+l
S Mx o4 Mn+1x ’
we have
LIF o - Fn+l(x)'
m m
< n n+l
) Mx "+ M x )
Mo v "
= Mx o +2 Y oMx o
n
n=1
" "n+1
If 0 <x <r <1, then x = 2 x 2 ... >0, and for any N

N
I z Mnl < A (A is a constant)
n=0

For each such x, by Abel's inequality

N mn my my
|l Mx® = ax s ar
n=1
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for any N. Let N *> », we have

o m my
| Z Mnx nl < Ar .
n=1
Thus
m) my
) |Fn(x) -F ()| sMr T +2Ar .
m m,

Let H = Mor 0 + 2Ar * + 1. H is independent of x and

LIF G0 - F 0] <n

in some interval 0 < x S c < b.
THEOREM 2.2. Suppose "F" is regular. Then XanFn(x) convergent implies that
2

ZanFn(x) convergent.

PROOF. It follows from the regularity of "F" and lim Fn(x) = 1 for each n, that

x>0
LIF, ) - F 0] <H,
and
lro(x)l <H, |F )| <H +H. n=1,.. (2.2)
where H, Hl are independent of x, in some interval 0 < x £ ¢ < b. ZanFn(x) = F(x),

for any € > 0 and each x, we can choose No(e,x), such that

N-1
InZO a F (x) - F()| <e,

N > NO(E,x) + 1.

Let
n

S = z a,F, (x) ,
n 1=0 i'i

also P P
| % anF:(x)| = | g anFn(x)Fn(X)l

P
- Ig (5,(x) = 5__ (x)F_(x) |
P
- IIEq [(5,(x) = Fx)) + (F(x) = 5 _; (x)IF, ()]
P-1
< |F) = sy o] [Fg@| + g s, -Fe)| |F ) -F )| ]

+ |(SP(X) - F(x)| |FP(X)| .

For P > N > NO(E,x) + 1, it follows
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l

2 =
anFn(x)l < e(H +H) + e+ e(H +H) = c(2H + 3H),

Z g

Therefore, ZanF;(x) is a convergent in the interval 0 < x £ ¢c < b.

COROLLARY 2.1. Suppose that "F" is regular, then ZanFn(x) convergent implies
that ZanF;m(x) convergent, where m is a positive integer.

PROOF. It follows from Theorem 2.2 that m = 2 the assertion is true. Suppose

that Zaan(x) is convergent and

afe =cw ,

and let
n k
s, (x) = 120 a,F (%),
then
P k+1 P k
I g aF (x| = I% a F () F_(x) |

P
= | g (s,(x) = 8, _;(x)) F (0l

P
= | % [(8,(x) = 6(x)) + (6(x) - 8 _ NI F () -

k+1
Repeating the procedure of the proof of Theorem 2.2, the convergence of z anFn (x)

can be proved. By the Axiom of Mathematical Induction, for all positive integer m
the assertion of the corollary is true.

THEOREM 2.3. Suppose that "F" is regular, then "F™ is regular, where m is a
positive integer.

PROOF. Since

m

m
[ B L) = F (0

n+l

m-1 m-2 m-1
= | F (x) - Fn+1(x)l IFn ) +F () F () + .. +F () |,

it follows from (2.2) that

1
| P 0 -F, o,

m m m
I Fn(x) - Fn+1(x)l < m(ﬂl + H) n+l

and
m m
DIF o -F |

m-1

< m (B +H) 1 F () - F () [ .

nt+l

Hence for any positive integer m, if "F" is regular, then "F'" is regular also.
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THEOREM 2.4. Suppose that methods "F" and "G" are regular, then

1) " F +G" are regular;

2) " FG " is regular;

3) " F.l " is regular, if inf (F_(x)) 2 e # O.
O<xsc n

all n

PROOF. It follows from (2.1) and (2.2) that

D Zl(Fn * Gn) - (Fn+1 * Gn+l)l
= z |(Fn - Fn+l) : (Gn - Gn+1)I

< z [l Fn - Fn+1 t Gn - Gn+1 I ]

< HF + HG s
2 IF8, = Gyl
ol LG SUPTCRD SO N Y
s IFe - F a6+ [F 16 - F 6l
s e - Fgble b+ dep -6l Il

Lig -¢

|+ l6, -6l

1
< -
HG an Fn+1

and 1 1
DIFgGy = Foy Cryy | < Hellg + Helg
3) IF- _ F-l | _ IFn+1 FnI an+l - Fnl
n n+l IF l IF I o2 ’
n+l n
and
2 lF-l _ F—l | s X lFn+1 FnI

n n+l

s 5 LIF 00 - F (]

where HF’ HG’ Hé, and H1 are independent of x, in some interval 0 < x S ¢ < b.

G
Therefore, the assertions 1), 2) and 3) are true. The proof is completed.
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