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1. INTRODUCTION.

Let A be a bounded linear operator on a complex Hilbert space H. For a complex
valued function f analytic on a domain E of the complex plane containing the spectrum
o(A) of A, let f(A) denote the operator on H defined by the Riesz Dunford integral
([2, p.568]). )

£(A) = — /1 £(z) (21-A) laz,
2mi ¢
where C is a postively oriented simple closed rectifiable contour containing o(A)
in its inside domain @ and satisfying CUQc E.Fan[3] has obtained Schwarz lemma for
f(A) and has given several applications of his results including the Harnack's
inequalities for operators in [3,4].
In this paper, we obtain a generalized Schwarz lemma and some further Harnack

type inequalities for operators.

2. SOME PRELIMINARY LEMMAS.

We need the following lemmas.

LEMMA 1. Let a,b,c,d be complex numbers such that ad - bc # 0, ¢ # 0 and
let T be a bounded linear operator on a Hilbert space H such that -d/c is not in
o(T). Then -1
|| (aT + bI) (cT +dI) || s« (2.1)

for 0< r<| a| | c¢| if and only if
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1T+ I s . (2.2)

Equality holds in (2.1) and (2.2) simultanecusly.
PROOF. The inequality (2.1) is true if and only if

£21 - (Sr* +41)"} (aT* + BI) (aT + bI) (cT + dD)! 2 0
or

(et* + a1)™! [£2(CT* + dI) (cT + dI) - (aT* bI)(aT + bI)] (cT+dI) 120

The operator inside the square brackets can be written as

2| ad-be| @ - r2cd ab - rlcd [ab - rZed|?
—_— I - {T*T+ —_ T* + —_— T+ ——— I}
2 2 2 2 2 2 2 2 2 2 2 2,2
fal® - r%|e] [al® - r%[c| lal® - %|c] (lal® - %le|®)
or
r2|ad - be] ab - % cd T b - % ad
—_ T[T — ] [ ¢ ——— T ] .
2 2 2 2 2 2 2 2
lal® - °le|? lal® - r%[ec] lal® - £%c|

This last expression is a positive operator if and only if (2.2) holds. This
completes the proof.
LEMMA 2. Let a,b,c,d and T be as in Lemma 1. Then,

-1 bd - £* ac rlad - bc|
1(aT + bI)(eT+ dI) =~ - ——r  Iig —————— (2.3)
la]? - elel® Tlaf? - £?fe)?
for 0 < r < |d| /|c| if and only if ITNSr. Equality holds in (2.3) if and only if
iTH = r.
PROOF. The inequality (2.3) is equivalent to

2 2, 2 2 -1 rfad - be|
H{(aT+bI)( [d]“ - r“|c|® ) - (bd - £“ ac) (cT + dI)} (cT + dI) "# s
After simplication the above can be written as
T 2 - '1 voA
I (dT + r“ cI) (cT +dI) "I s ¢ . (r.4)

Now an application of Lemma 1 shows that (2.4) is equivalent to | T lsr .

3. A GENERALIZED SCHWARZ LEMMA.

Let D denote the open unit disc {z:| z |<1} in the complex plane and let H(D)
be the class of complex valued functions analytic in D. Further, let
B(D) = {f € H(D): [£f(z)| <1, z € D} and let BO(D) = {f € B (D): £(0) =0} .
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THEOREM 1. Let f be in B(0) and let A be a proper contraction on a Hilbert

space H. Then,

AN - |£(0)] AL+ [£(0)]
—_— sif(A) g —— . (3.1)
1-1£C0)| I Al 1+ [£€0)| WAl

PROOF. Since f is in B(D) and A is a proper contraction, by a result of F and
([3, Theorem 1, p.276]1), T = f(A) is also a proper contraction. Now, if we define
the complex valued function g by g(z) = (£(z)- £(0)} (1-£(0) f(z))-lthen g is in
BO(D) and g(A) = (T-£(0)I) (I-£(0) T)-1 is also a proper contraction. Further, by

the operator version of Schwarz lemma ([3, Corollary 2, p.280]),

bog(AN < 0 A L. (3.2)
If we take a=d =1, b= f(0), ¢ = - f(0) and r = Al in Lemma 1 then (3.2) is
equivalent to
2 2
1-1A1° £(0) (1-1£C€0) | “)u Aw
I £(A) - _ TIs ———
1-[£00) |21an? 1-|£0)|%1ar?

Using triangle inequality we get both the inequalities in (3.1).
CORALLARY 1. Let f in Bo(D) be given by the series f(z) = bz™+ ........ ,

bz 0, and let A be a proper contraction on a Hilbert space H. Then

n I AW - |b] n I AN +|b]
hA F (———)s 1 £(A) 1A (———— ) . (3.3)
1 -|b| WAl 1+|b| 1A 1
PROOF. The function g, defined by g(z) = (£f(2)/2"), z = 0 and g(0)=b, is in
B(D) and f(A) = A"g(A). Hence the result follows from Theorem 1.
REMARK. The author learned from Professor R. Finn that Theorem 1 follows

independently from some results of K. Fan that are now in press.

4. SOME HARNACK TYPE INEQUALITIES.
Let P(a, B), O S a<l, 0< B = 1, denote the subclass of functions p in H(D)
satisfying p(0) = 1 and
| p(z) - 1]

<1, zin D .

(28 -1)p(z) + (1- 208) |

This class of functions have been introduced and studied by Juneja and Mogra [5].
It has been shown in [5] that the nth Taylor coefficient a, of a function p in P(a,B)

satisfies the sharp inequality |an|§ 28 (1-a). Observe that

P(0,1) ={p € H(D): p(0) =1, Re p(z) > 0, z in D },
P(le) ={P € H(D): P(O) =1, Re P(Z) >a, z in D },

- . - N 1 1
P(0,8) ={p € H(D): p(0) =1, [p(») ) < T 1,
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and

P(a,B)cP(0,1), for all admissible choices of a and B . We prove the following
theorem which extends a distortion theorem by Kapoor and the author ([6, Theorem 1,

p.861).
THEOREM 2. Let p in P(a,B) be given by the series p(z) = 1+2b(l-a) Bza+... R

0 < |b|] £1, z in D and let A be a proper contraction on a Hilbert space H. Then,

1+ 0AL [b| + (1-208 D(IA | + [b])1 A"

I p(a) 1 s - (4.1)
L+ A I|b] + (1-28)(0 A 1 +[b])1 A" 4
1+ 0 A Ifbl- (1-2a8 DI A I +|b| )i A" 1
I PCA) | 2 * Iol ¢ Ibl s (4.2)
41 A B[] -(1-28 Y(I A 1+]b [)IA"
- (1- b A"
1+ Alb|- (1-2a8 (Il Al +]|b] ) I < Re p(A), (4.3)
141 Al|b|-(1-28 )(I A 1+[b] ) 4™
1+I Al[b] + (1-2a )(I AN +[b] )i A™ | :
Re p(A) = = (4.4
1+ Al|bJ+ (1-28 Y(I Al +|b] ) 1A™
28(1-a) (Il Al +[b 1+0 Al|b[)n A™

1+ anfb] )2 - (1-28)2C1An +[b] )1 A"y

PROOF. From the definition of P(a,B), it follows that there exists a function
w in Bo(D) such that

p(z) = {1+ (1-20B) w(z)} {1+ (1-28) w(z) }_1, z in D
and

p(A) = {1+ (1-2aB) T} {1+ (1-28 ) T}_l, where T= w(A).
Further, it is observed that w(z)= bz"+ . . . ., where z in D. Hence by Corollary
1., we can say

A b
BT 8 =1 wA) 1 s A" ) ( !__j_:ll___l ) =1 . (4.6)

1+1 Al |b|

Now, choosing a = 1-2aB, c= 1-28, b= d-1 in Lemma 2, (4.6) is equivalent to

1-r% (1-208) (1-28) 2r (1-a)8
Ip(A) I < —
1-r%(1-2 g)? 1-r2(1-2 )2
Hence
1-(1-20B) r 24 (1-2af)r
<) p(A) | s —

1-(1-28 )r B G E T
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Substituting the value of r in the above inequality, we get (4.1) and 4.2).
Also,

1-r2(1-208) (1-28 ) 1-r2(1-2 aB)(1-28)
*Re [p(A) - R 11 <1 p(A) - — 7 I
1-(1-2 g)° r~ 1-r°(1-2 B)
2r(1-a )B
S ——— 1
1-r (1—28)2

This gives (4.3) and (4.4). Similarly,

1-r2 (1-208 ) ( 1-28 )

+ Im p(A) = * Im [p(A) - ” S 1]
1-r°(1-2 B)
) 1-r2(1-2 og)(1-28 ) 28 (1-a) r
S 1 p(A) - Nl S — o 1.
1-c2(1-28 )? 1-£2(1-28)

From this (4.5) follows. This completes the proof.

REMARK. The right hand side of (4.1) and (4.2) are increasing and decreasing

function of | b |, respectively. For the case | b| =1, 2=0 and B =1, our Theorem
2 includes some results of Fan ([3, Corollary 3,P281], [4, Proposition 2,P.335]).
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